Рассмотрим соотношение вида F(x, y)=0 , связывающее переменные величины x и у . Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у . Примеры уравнений: 2х + 3у = 0, х 2 + у 2 – 25 = 0,

sin x + sin y – 1 = 0.

Если (1) справедливо для всех пар чисел х и у, то оно называется тождеством . Примеры тождеств: (х + у) 2 - х 2 - 2ху - у 2 = 0, (х + у)(х - у) - х 2 + у 2 = 0.

Уравнение (1) будем называть уравнением множества точек (х; у), если этому уравнению удовлетворяют координаты х и у любой точки множества и не удовлетворяют координаты никакой точки, не принадлежащие этому множеству.

Важным понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия α.


Определение. Уравнение (1) называется уравнением линии α (в созданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии α , и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Если (1) является уравнением линии α, то будем говорить, что уравнение (1) определяет (задает) линию α.

Линия α может определятся не только уравнением вида (1), но и уравнением вида

F (P, φ) = 0 , содержащим полярные координаты.

  • уравнение прямой с угловым коэффициентом;

Пусть дана некоторая прямая, не перпендикулярная, оси ОХ . Назовем углом наклона данной прямой к оси ОХ угол α , на который нужно повернуть ось ОХ , чтобы положительное направление совпало с одним из направлений прямой. Тангенс угла наклона прямой к оси ОХ называют угловым коэффициентом этой прямой и обозначают буквой К .

К=tg α
(1)

Выведем уравнение данной прямой, если известны ее К и величина в отрезке ОВ , которой она отсекает на оси ОУ .

(2)
y=kx+b
Обозначим через М " точку плоскости (х; у). Если провести прямые BN и NM , параллельные осям, то образуются r BNM – прямоугольный. Т. MC C BM <=>, когда величины NM и BN удовлетворяют условию: . Но NM=CM-CN=CM-OB=y-b, BN=x => учитывая (1), получаем, что точка М (х; у) С на данной прямой <=>, когда ее координаты удовлетворяют уравнению: =>

Уравнение (2) называют уравнением прямой с угловым коэффициентом. Если K=0 , то прямая параллельна оси ОХ и ее уравнение имеет вид y = b.

  • уравнение прямой, проходящей через две точки;
(4)
Пусть даны две точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2). Приняв в (3) точку М (х; у) за М 2 (х 2 ; у 2), получим у 2 -у 1 =k(х 2 - х 1). Определяя k из последнего равенства и подставляя его в уравнение (3), получаем искомое уравнение прямой: . Это уравнение, если у 1 ≠ у 2 , можно записать в виде:

Если у 1 = у 2 , то уравнение искомой прямой имеет вид у = у 1 . В этом случае прямая параллельна оси ОХ . Если х 1 = х 2 , то прямая, проходящая через точки М 1 и М 2 , параллельна оси ОУ , ее уравнение имеет вид х = х 1 .

  • уравнение прямой, проходящей через заданную точку с данным угловым коэффициентом;
(3)
Аx + Вy + С = 0
Теорема. В прямоугольной системе координат Оху любая прямая задается уравнением первой степени:

и, обратно, уравнение (5) при произвольных коэффициентах А, В, С (А и В ≠ 0 одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство.

Сначала докажем первое утверждение. Если прямая не перпендикулярна Ох, то она определяется уравнением первой степени: у = kx + b , т.е. уравнением вида (5), где

A = k, B = -1 и C = b. Если прямая перпендикулярна Ох, то все ее точки имеют одинаковые абсциссы, равные величине α отрезка, отсекаемого прямой на оси Ох.

Уравнение этой прямой имеет вид х = α, т.е. также является уравнение первой степени вида (5), где А = 1, В = 0, С = - α. Тем самым доказано первое утверждение.

Докажем обратное утверждение. Пусть дано уравнение (5), причем хотя бы один из коэффициентов А и В ≠ 0 .

Если В ≠ 0 , то (5) можно записать в виде . Пологая , получаем уравнение у = kx + b , т.е. уравнение вида (2) которое определяет прямую.

Если В = 0 , то А ≠ 0 и (5) принимает вид . Обозначая через α, получаем

х = α , т.е. уравнение прямой перпендикулярное Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка.

Уравнение вида Ах + Ву + С = 0 является неполным, т.е. какой – то из коэффициентов равен нулю.

1) С = 0; Ах + Ву = 0 и определяет прямую, проходящую через начало координат.

2) В = 0 (А ≠ 0) ; уравнение Ах + С = 0 Оу.

3) А = 0 (В ≠ 0) ; Ву + С = 0 и определяет прямую параллельную Ох.

Уравнение (6) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения удобна для геометрического построения прямой.

  • нормальное уравнение прямой;

Аx + Вy + С = 0 – общее уравнение некоторой прямой, а (5) x cos α + y sin α – p = 0 (7)

ее нормальное уравнение.

Так как уравнение (5) и (7) определяют одну и ту же прямую, то (А 1х + В 1у + С 1 = 0 и

А 2х + В 2у + С 2 = 0 => ) коэффициенты этих уравнений пропорциональны. Это означает, что помножив все члены уравнения (5) на некоторый множитель М, мы получим уравнение МА х + МВ у + МС = 0 , совпадающее с уравнением (7) т.е.

МА = cos α, MB = sin α, MC = - P (8)

Чтобы найти множитель М, возведем первые два из этих равенств в квадрат и сложим:

М 2 (А 2 + В 2) = cos 2 α + sin 2 α = 1


Если указано правило, согласно которому с каждой точкой М плоскости (или какой-нибудь части плоскости) сопоставляется некоторое число u, то говорят, что на плоскости (или на части плоскости) «задана функция точки»; задание функции символически выражается равенством вида u=f(M). Число u, сопоставляемое с точкой М, называется значением данной функции в точке М. Например, если А - фиксированная точка плоскости, М - произвольная точка, то расстояние от А до М есть функция точки М. В данном случае f(m)=AM.

Пусть дана некоторая функция u=f(M) и вместе с тем введена система координат. Тогда произвольная точка М определяется координатами x, y. Соответственно этому и значение данной функции в точке М определяется координатами x, y, или, как еще говорят, u=f(M) есть функция двух переменных x и y . Функция двух переменных x и y обозначается символом f(x; y): если f(M)=f(x;y), то формула u=f(x; y) называется выражением данной функции в выбранной системе координат. Так, в предыдущем примере f(M)=AM; если ввести декартову прямоугольную систему координат с началом в точке А, то получим выражение этой функции:

u=sqrt(x^2 + y^2)

ЗАДАЧА 3688 Дана функция f (x, y)=x^2–y^2–16.

Дана функция f (x, y)=x^2–y^2–16. Определить выражение этой функции в новой системе координат, если координатные оси повернуты на угол –45 градусов.

Параметрические уравнения линии


Обозначим буквами х и у координаты некоторой точки М; рассмотрим две функции аргумента t:

x=φ(t), y=ψ(t) (1)

При изменении t величины х и у будут, вообще говоря, меняться, следовательно, точка М будет перемещаться. Равенства (1) называются параметрическими уравнениями линии , которая является траекторией точки М; аргумент t носит название параметра. Если из равенств (1) можно исключить параметр t, то получим уравнение траектории точки М в виде


Линию на плоскости можно задать при помощи двух уравнений

где х и у - координаты произвольной точки М (х ; у ), лежащей на данной линии, а t - переменная, называемая параметром .

Параметр t определяет положение точки (х ; у ) на плоскости.

Так, если

то значению параметра t = 2 соответствует на плоскости точка (4; 1), т.к. х = 2 + 2 = 4, y = 2 · 2 – 3 = 1.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания кривой называется параметрическим , а уравнения (1) - параметрическими уравнениями линии .

Рассмотрим примерыизвестных кривых, заданных в параметрическом виде.

1) Астроида:

где а > 0 – постоянная величина.

При а = 2 имеет вид:

Рис.4. Астроида

2) Циклоида: где а > 0 – постоянная.

При а = 2 имеет вид:

Рис.5. Циклоида

Векторное уравнение линии

Линию на плоскости можно задать векторным уравнением

где t – скалярный переменный параметр.

Каждому значению параметра t 0 соответствует определённый вектор плоскости. При изменении параметра t конец вектора опишет некоторую линию (рис. 6).

Векторному уравнению линии в системе координат Оху

соответствуют два скалярных уравнения (4), т.е. уравнения проекций

на оси координат векторного уравнения линии есть её параметрические уравнения.



Рис.6. Векторное уравнение линии

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемещается на плоскости, то указанные уравнения называются уравнениями движения , линия – траекторией точки, параметр t - время .

Давайте повторим * Какое уравнение называется квадратным? * Какие уравнения называются неполными квадратными уравнениями? * Какое квадратное уравнение называется приведенным? * Что называют корнем квадратного уравнения? * Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение? Какое уравнение называется квадратным? Какие уравнения называются неполными квадратными уравнениями? Какое квадратное уравнение называется приведенным? Что называют корнем квадратного уравнения? Что значит решить квадратное уравнение?
















Алгоритм решения квадратного уравнения: 1. Опредилить каким способом рациональней решить квадратное уравнение 2. Выбрать наиболее рациональный способ решения 3. Определение количества корней квадратного уравнения 4. Нахождение корней квадратного уравнения Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу… Для лучшего запоминания заполним таблицу…






Дополнительное условие Уравнение Корни Примеры 1. в = с = 0, а 0 ах 2 = 0 х 1 = 0 2. с = 0, а 0, в 0 ах 2 + bх = 0 х 1 = 0, х 2 =-b/а 3. в = 0, а 0, в 0 ах 2 + с = 0 а) х 1,2 = ±(c/а), где с/а 0. б) если с/а 0, то решений нет 4. а 0 ах 2 + bх + с = 0 x 1,2 =(-b±D)/2 а, где D = в 2 – 4 ас, D0 5. в – четное число (в = 2k), а 0, в 0, с 0 ах 2 + 2kx + c = 0 х 1,2 =(-b±D)/а, D 1 = k 2 – ac, где k = 6. Теорема обратная теореме Виета x 2 + px + q = 0x 1 + x 2 = - p x 1 x 2 = q


II. Специальные методы 7. Метод выделения квадрата двучлена. Цель: Привести уравнение общего вида к неполному квадратному уравнению. Замечание: метод применим для любых квадратных уравнений, но не всегда удобен в использовании. Используется для доказательства формулы корней квадратного уравнения. Пример: решите уравнение х 2 -6 х+8=0 8. Метод «переброски» старшего коэффициента. Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 +by+ac=0 связаны соотношениями: и Замечание: метод хорош для квадратных уравнений с «удобными» коэффициентами. В некоторых случаях позволяет решить квадратное уравнение устно. Пример: решите уравнение 2 х 2 -9 х-5=0 На основании теорем:Пример: решите уравнение 157 х х-177=0 9. Если в квадратном уравнении a+b+c=0, то один из корней равен 1, а второй по теореме Виета равен с /а 10. Если в квадратном уравнении a+c=b, то один из корней равен -1, а второй по теореме Виета равен –с/а Пример: решите уравнение 203 х х+17=0 х 1 =у 1 /а, х 2 =у 2 /а


III. Общие методы решения уравнений 11. Метод разложения на множители. Цель: Привести квадратное уравнение общего вида к виду А(х)·В(х)=0, где А(х) и В(х) – многочлены относительно х. Способы: Вынесение общего множителя за скобки; Использование формул сокращенного умножения; Способ группировки. Пример: решите уравнение 3 х 2 +2 х-1=0 12. Метод введения новой переменной. Удачный выбор новой переменной делает структуру уравнения более прозрачной Пример: решите уравнение (х 2 +3 х-25) 2 -6(х 2 +3 х-25)= - 8









1. Какое утверждение называется следствием? Докажи­те, что прямая, пересекающая одну из двух парал­лельных прямых, пересекает и другую.2.Докажите, что ес

ли две прямые параллельны третьей прямой, то они параллельны.3. Какая теорема называется обратной данной теореме?Приведите примеры теорем, обратных данным.4.Докажите, что при пересечении двух параллельных прямых секущей накрест лежащие углы равны.5.Докажите, что если прямая перпендикулярна к од­ной из двух параллельных прямых, то она перпенди­кулярна и к другой.6.Докажите, что при пересечении двух параллельных прямых секущей: а) соответственные углы равны; б) сумма односторонних углов равна 180°.

Помогите Пожалуйста с вопросами по геометрии(9 класс)! 2)Что значит разложить вектор по двум

данным векторам. 9)Что такое радиус-вектора точки?Докажите, что координаты точки равны соответствующим координатам векторов. 10)Выведите формулы для вычисления координат вектора по координатам его начала и конца. 11)Выведите формулы для вычисления координат вектора по координатам его концов. 12) Выведите формулу для вычисления длины вектора по его координатам. 13)Выведите формулу для вычисления расстояния между двумя точками по их координатам. 15)Какое уравнение называется уравнением данной линии?Приведите пример. 16)Выведите уравнение окружности данного радиуса с центром в данной точке.

1)Сформулируйте и докажите лемму о коллинеарных векторах.


3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
10)Выведите формулы для вычисления координат вектора по координатам его начала и конца.
11)Выведите формулы для вычисления координат вектора по координатам его концов.
12) Выведите формулу для вычисления длины вектора по его координатам.
13)Выведите формулу для вычисления расстояния между двумя точками по их координатам.
14)Приведите пример решения геометрической задачи с применением метода координат.
16)Выведите уравнение окружности данного радиуса с центром в данной точке.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.

Пожалуйста очень надо! Желательно с рисунками(где надо)!

ГЕОМЕТРИЯ 9 КЛАСС.

1)Сформулируйте и докажите лемму о коллинеарных векторах.
2)Что значит разложить вектор по двум данным векторам.
3)Сформулируйте и докажите теорему о разложении вектора по двум неколлинеарным векторам.
4)Объясните, как вводится прямоугольная системы координат.
5)Что такое координатные векторы?
6)Сформулируйте и докажите утверждение о разложении произвольного вектора по координатным векторам.
7)Что такое координаты вектора?
8)Сформулируйте и докажите правила нахождения координат суммы и разности векторов, а также произведения вектора на число по заданным координатам векторов.
9)Что такое радиус-вектора точки? Докажите, что координаты точки равны соответствующим координатам векторов.
14)Приведите пример решения геометрической задачи с применением метода координат.
15)Какое уравнение называется уравнением данной линии? Приведите пример.
17)Напишите уравнение окружности данного радиуса с центром в начале координат.
18)Выведите уравнение данной прямой в прямоугольной системе координат.
19)Напишите уравнение прямых, проходящих через данную точку M0 (X0: Y0) и параллельных осям координат.
20)Напишите уравнение осей координат.
21)Приведите примеры использования уравнений окружности и прямой при решении геометрических задач.


Close