Пассивный транспорт веществ через клеточные мембраны включает в себя следующие разновидности:простую диффузию и облегченную диффузию Фильтрация

Простая диффузия – процесс переноса вещества из области с большей концентрацией в область меньшей концентрации. Диффузия описывается уравнением Фика:

где вектор плотности потока массы диффундирующего вещества,С i и C 0 – концентрации диффундирующего вещества внутри и вне клетки. С mi и C m 0 – концентрации диффундирующего вещества внутри мембраны на границе мембрана.P– проницаемость мембраны.

Облегченная диффузия.

Срособность мембран обусловлена двумя причинами: наличием в них переносчиков , называемыхионофорами (подвижных ификсированных ) и каналов . Облегченная диффузия – процесс транспорта веществ с помощью специальных молекул-переносчиков.

где - перепад давления на расстоянии , - вязкость жидкости, - радиус поверхности фильтрации, - время переноса.

Фильтрация. Фильтрация представляет собой перенос молекул растворителя под действием градиента давления . Таким образом, причиной и движущей силой в процессе фильтрации является разность давлений. Объем растворителя, перенесенного в результате фильтрации, определяется формулой Пуазейля:

где - перепад давления на расстоянии , - вязкость жидкости, - радиус поверхности

жидкости.

54. Активный транспорт ионов. Механизм активного транспорта вещ-в на примере Na-K насоса. Если бы в клетках сущ. только пассивный транспорт, то конц-ции, давления и др. величины вне и внутри клетки сравнялись бы. Поэтому сущ-т др. механизм, работающий в направлении против электрохимического градиента и происходящий с затратой энергии клеткой. Перенос молекул и ионов против электрохимического градиента,осуществляемый клеткой за счет энергии метаболических процессов, наз.активным транспортом. Он присущ только биологическим мембранам. Активный перенос вещ-ва через мембрану происходит за счет свободной энергии,высвобождающейся в ходе хим. Реакций внутри клетки.Активный транспорт в организме создает градиенты концентраций, электр. потенциалов, давлений,т.е.поддерживает жизнь в организме. Изучены 3 основные системы акт.трансп., кот-ые обеспечивают перенос ионов Na,K,Ca,H через мембрану.Механизм. Ионы К + и Na + неравномерно распределены по разные стороны мембраны:концентр. Na + снаружи > ионов K + ,а внутри клетки K + > Na + .Эти ионы диффундируют через мембрану по направлению электрохимического градиента,что приводит к его выравниванию. Na-K насосы вх. в состав цитоплазмат. мембран и работают за счет энергии гидролиза молекул АТФ с обр-ем мол-л АДФ и неорганич. фосфата Ф н :АТФ=АДФ+Ф н. Насос работает обра-тимо: градиенты конц-ций ионов способ-ют синтезу мол-л АТФ из мол-л АДФ и Ф н: АДФ+Ф н =АТФ.Насос переносит из клетки во внеш. среду 3 иона К + внутрь клетки.



55.Способы проникновения вещ-в через биологические мембраны.. Одной из важнейших хар-к клеточных мембран(КМ) явл-ся избират. проницаемость. КМ избирательно снижает скорость передвижения мол-л в клетку и из нее. Чем меньше мол-ла и чем меньше она обр. водород. связей,тем быстрее она диффун-дирует ч/з мембрану. =>, чем меньше мол-ла и чем более она жирорастворима, тем быстрее она будет проникать через мембрану.Малые неполярные мол-лы легко растворимы в липидах КМ и быстро диффундируют.Клетка была вынуждена создать спец.мех-мы для транспорта растворимых в воде вещ-в через мембрану-через поры в мембране и посредством транспортных белков-переносчиков мол-л. Для жиронерастворимых вещ-в и ионов мембрана выступает как молекулярное сито: чем больше размер частицы,тем меньше проницаемость мембраны для этого вещ-ва. Избирательность переноса обеспечивается набором в мембране пор определенного радиуса,соответствующих размеру проникающей частицы.Это распределение зависит от мембранного потенциала. Перенос малых водорастворимых мол-л осуществляется при помощи специальных транспортных белков.Это особые белки,каждый из которых отвечает за транспорт определенных мол-л или групп мол-л. За перенос сахара,аминокислот и др. полярных мол-л ответственны специальные мембранные транспортные белки.Каждый из них предназначен для определенного класса мол-л.Все они обеспечивают перенос мол-л через мембрану, формируя в ней сквозные проходы. Транспортные белки делятся набелки-переносчики, и каналообразующие белки.Переносчики взаим-ют с молекулой переносимого вещ-ва и каким-либо способом перемещают ее сквозь мембрану. Каналообразующие -формируют в мембране водные поры,через кот-ые могут проходить вещ-ва. Отличия облегченной диффузии от простой: 1)перенос ионов с участием переносчиков происх. значительно быстрее; 2)обладает св-вом насыщения- при ув. концентр. С одной стороны мемраны плотность потока вещ-ва возрастает лишь до некоторого предела. Разновидностью облегч.дифф.-транспорт с помощью неподвижных мол-л переносчиков,фиксированных поперек мембраны. Осмос- движение мол-л воды через полупроницаемые мембраны из мест с меньшей концентрацией растворенного вещ-ва в места с большей концентр. Осмос обусл-ет гемолиз эритроцитов в гипотонических растворах и тургор в растениях.

56. История открытия биопотенциалов. Гипотеза Бернштейна. . Фр.священник аббат Нолле в 1746г открыл явление осмоса.1826г. Дютроше доказал,что осмос есть результат проявления не особых,мифических сил,а законов физики и химии. Немецк.ботаник Пфеффер -изобрел осмометр и измерил величину осмотического давления.Он обнаружил,что для каждого раствора величина давления пряма-пропорциональна концентр. раств.вещ-ва,не проходящего через полупроницаемую мембрану (Р осм =m/V m-масса растворенного вещ-ва, V-объем раствора).Вант-Гофф пришел к заключению,что мол-лы растворенного вещ-ва в растворителе ведут себя подобно мол-ам идеального газа(Р осм =С м RT С м -молярная плотность растворенного вещ-ва).Теория Вант-Гоффа давала точные значения величины осм.давления для многих вещ-в,но для некоторых оказ. больше расчетной в 2раза.С.Аррениус предположил что в р-ре мол-ла соли распадается на 2 частицы-электролитич. диссоциация.Вальтер Нернст обосновал идею диффузного потенциала, возн-го при соприк-нии двух жидкостей. Вел-на дифф.потенц. рассчит-ся: Ф н =(u-v/u+v)×(RT/F)×Ln(C 1 /C 2), где u и v -скорости быстрого и медл. ионов, R- газ.постоянная, C1 и С2- конц-ции электролита. Для возн-ния дифф.потенц. нужна разность конц-ций электролита, различная подвиж-ть анионов и катионов. Бернштейн начал объяснять электрич св-ва мышц не устройством этих органов в целом,а свойствами клето,из которых эти органы состояли.1902г-год рождения мембранной теории биопотенциалов. Согласно гипотезе Бернштейна, каждая клетка им. оболочку,кот-ая представляет собой полупроницаемую мембрану. Внутри и вне клетки имеется много свободных ионов,среди кот-ых нах-ся ионы K + . Разность пот-лов между внутр. стороной БМ и ее наружной стороной наз-ся потенциалом покоя (ПП).Величина ПП опис-ся формулой Нернста: Ф Н =­­­­-(RT/F)×Ln[(K +) I /(K +) 0 ] где i - конц-ция ионов К внутри клетки, 0 - конц-ция ионов К снаружи клетки.

57.Мембранно-ионная теория генерации биопот-лов клеткой и основ. опыты, ее подтвер-щие. Ю.Бернштейн (опыты на мышце лягушки). Нагрев 1 конца целой мышцы, от нагретого участка к холодному потечет ток. Электрич. ток течет по направлению от точек пространства с более высоким потенциалом к месту с более низким значением электрического потенциала.В 1905г. Гебер обнаружил,что все соли,сод-е К, оказ. на мышцу схожее д-вие: участок на кот-ый действовал раствор соли К, приобретал отрицательный потенциал по отношению к другим участкам мышцы.Все соли К при диссоциации в воде повышали наружную конц-цию ионов К, при этом отношение (K +) i \(K +) 0 умен-ся, ум-ся и пот-ал той области мышцы, на кот. д-ют соли К. Однако эксперименты Бернштейна и Гебера были косвенными. Чтобы подтвердить правильность гипотезы,требовалось доказать следующее: 1)клетки им. мембрану,кот-ая проницаема лишь для одного иона;2)конц-ция этого иона по обе стороны БМ различная;3)потенциал на мембране возникает только за счет проницаемости мембраны для этого иона и он равен нернстовскому потенциалу. В 1936г.Дж.Юнг обнаружил кольмара,у кот-ого диаметр нервного волокна доходил до миллиметра.Аксон кальмара был гигантской клеткой,хотя сам моллюск не был гигантом.Нервное волокно выняли из моллюска и поместили в морскую воду,и оно не погибло.=>(эксперимент на клет.уровне). В 1939г. А.Ходжкин и Хаксли измерили разность потенциалов на аксоне кальмара.Они доказали,что внутри аксона им. много ионов К,и они обр. ионный газ,т.е.нах-ся в свобод. сост-нии.

При пассивном переносе вода, ионы, некоторые низкомолекулярные соединения из-за разности концентраций свободно перемещаются и выравнивают концентрацию вещества внутри и вне клетки. В пассивном переносе основную роль играют такие физические процессы, как диффузия, осмос и фильтрация (Рис. 24-26).

Если вещество движется через мембрану из области с высокой концентрацией в сторону низкой концентрации без затраты клеткой энергии, то такой транспорт называется пассивным, или диффузией ). Различают два типа диффузии: простую и облегченную . Мембрана клетки является проницаемой для одних веществ и непроницаемой для других. Если клеточная мембрана проницаема для молекул растворенного вещества, она не препятствует диффузии.

Простая диффузия характерна для небольших нейтральных молекул (H 2 O, CO 2 , O 2), а также гидрофобных низкомолекулярных органических веществ. Эти молекулы могут проходить без какого-либо взаимодействия с мембранными белками через поры или каналы мембраны до тех пор, пока будет сохраняться градиент концентрации.

Облегченная диффузия . Характерна для гидрофильных молекул, которые переносятся через мембрану также по градиенту концентрации, но с помощью специальных мембранных белков - переносчиков. Для облегченной диффузии, в отличие от простой, характерна высокая избирательность, так как белок переносчик имеет центр связывания комплементарный транспортируемому веществу, и перенос сопровождается конформационными изменениями белка.

Один из возможных механизмов облегченной диффузии может быть следующим: транспортный белок (транслоказа) связывает вещество, затем сближается с противоположной стороной мембраны, освобождает это вещество, принимает исходную конформацию и вновь готов выполнять транспортную функцию. Мало известно о том, как осуществляется передвижение самого белка. Другой возможный механизм переноса предполагает участие нескольких белков-переносчиков. В этом случае первоначально связанное соединение само переходит от одного белка к другому, последовательно связываясь то с одним, то с другим белком, пока не окажется на противоположной стороне мембраны.

Что касается транспорта ионов, то он осуществляется, как правило, с помощью диффузии через специальные ионные каналы (Рис.27).

Рис.27. Основные механизмы трансмембранной передачи сигнальной информации: I - прохождение растворимой в жирах сигнальной молекулы через клеточную мембрану; II - связывание сигнальной молекулы с рецептором и активация его внутриклеточного фрагмента; III - регулирование активности ионного канала; IV - передача сигнальной информации с помощью вторичных передатчиков. 1 - лекарство; 2 - внутриклеточный рецептор; 3 - клеточный (трансмембранный) рецептор; 4 - внутриклеточное превращение (биохимическая реакция); 5 - ионный канал; 6 - поток ионов; 7 - вторичный посредник; 8 - фермент или ионный канал; 9 - вторичный посредник.

Таким образом, существует несколько механизмов транспорта веществ.

Первый механизм – растворимая в липидах сигнальная молекула проходит через клеточную мембрану и активирует внутриклеточный рецептор (например, фермент). Так действует оксид азота, ряд жирорастворимых гормонов (глюкокортикоиды, минералокортикоиды, половые гормоны и тиреоидные гормоны) и витамин D. Они стимулируют транскрипцию генов в ядре клетки и, таким образом, синтез новых белков. Механизм действия гормонов заключается в стимуляции синтеза новых белков в ядре клетки, которые длительно сохраняются в клетке в активном состоянии.

Второй механизм передачи сигнала через клеточную мембрану – это связывание с клеточными рецепторами, имеющими внеклеточный и внутриклеточный фрагменты (то есть трансмембранными рецепторами). Такие рецепторы являются посредниками на первом этапе действия инсулина и ряда других гормонов. Внеклеточная и внутриклеточная части подобных рецепторов связаны полипептидным мостиком, проходящим через клеточную мембрану. Внутриклеточный фрагмент обладает ферментативной активностью, которая повышается при связывании сигнальной молекулы с рецептором. Соответственно возрастает скорость внутриклеточных реакций, в которых участвует этот фрагмент.

Третий механизм передачи информации – действие на рецепторы, регулирующие открытие или закрытие ионных каналов. К естественным сигнальным молекулам, взаимодействующим с такими рецепторами, относятся, в частности, ацетилхолин, гамма-аминомасляная кислота (ГАМК), глицин, аспартат, глутамат и другие, являющиеся медиаторами различных физиологических процессов. При их взаимодействии с рецептором происходит увеличение трансмембранной проводимости для отдельных ионов, что вызывает изменение электрического потенциала клеточной мембраны. Например, ацетилхолин, взаимодействуя с Н-холинорецепторами, увеличивает вход в клетку ионов натрия и вызывает деполяризацию и мышечное сокращение. Взаимодействие гамма-аминомасляной кислоты со своим рецептором приводит к повышению поступления ионов хлора в клетки, усилению поляризации и развитию торможения (угнетения) центральной нервной системы. Этот механизм передачи сигналов отличает быстрота развития эффекта (миллисекунды).

Четвертый механизм трансмембранной передачи химического сигнала реализуется через рецепторы, активизирующие внутриклеточный вторичный передатчик. При взаимодействии с такими рецепторами процесс протекает в четыре этапа. Сигнальная молекула распознается рецептором на поверхности клеточной мембраны, в результате их взаимодействия рецептор активизирует G-белок на внутренней поверхности мембраны. Активизированный G-белок изменяет активность либо фермента, либо ионного канала. Это приводит к изменению внутриклеточной концентрации вторичного посредника, через который уже непосредственно реализуются эффекты (изменяются процессы обмена веществ и энергии). Такой механизм передачи сигнальной информации позволяет усилить передаваемый сигнал. Так если взаимодействие сигнальной молекулы (например, норадреналина) с рецептором длится несколько миллисекунд, то активность вторичного передатчика, которому рецептор передает по эстафете сигнал, сохраняется в течение десятков секунд.

Вторичные посредники– это вещества, которые образуются внутри клетки и являются важными компонентами многочисленных внутриклеточных биохимических реакций. От их концентрации во многом зависит интенсивность и результаты жизнедеятельности клетки, и функционирование всей ткани. Наиболее известными вторичными посредниками являются циклический аденозинмонофосфат (цАМФ), циклический гуанозинмонофосфат (цГМФ), ионы кальция, калия и др.

Осмос – особый вид диффузии воды через полупроницаемую мембрану в область более высокой концентрации растворенного вещества. В результате такого движения внутри клетки создается значительное давление, которое называют осмотическим. Это давление может даже разрушить клетку.

Например, если эритроциты поместить в чистую воду, то под действием осмоса вода будет быстрее проникать в них, чем выходить. Такая среда называется гипотонической. По мере проникновения воды эритроцит будет набухать и “лопаться”. Другая ситуация – изотоническая среда. Если поместить эритроциты в воду, содержащую 0,87% поваренной соли, то осмотического давления не создается. Это объясняется тем, что при равной концентрации раствора внутри и снаружи клетки вода движется одинаково в обоих направлениях. Среда считается гипертонической, когда концентрация растворенных в ней веществ выше, чем в клетке. Клетка (эритроцит) в такой среде начинает терять воду, съеживается и гибнет.

Все эти особенности осмоса учитываются при введении лекарственных веществ. Как правило, лекарства, предназначенные для инъекций, приготавливаются на изотоническом растворе. Это предотвращает набухание или сморщивание клеток крови при введении лекарства. Капли в нос также готовят на изотоническом растворе, чтобы избежать набухания или обезвоживания клеток слизистой оболочки носа.

Осмосом объясняются и некоторые эффекты лекарств, например, слабительное действие английской соли (магния сульфат) и других солевых слабительных. В просвете кишечника они образуют гипертоническую среду. Вода под влиянием осмоса выходит из клеток кишечного эпителия, межклеточного пространства и крови в просвет кишечника, растягивает стенки кишечника, разжижает его содержимое и ускоряет опорожнение.

Фильтрация – движение молекул воды и растворенных в ней веществ через клеточную мембрану в направлении, противоположном действию осмотического давления.

Этот процесс становится возможным, если раствор в клетке находится под давлением, которое выше осмотического. Так, например, сердце нагнетает кровь в сосуды под определенным давлением. В тончайших капиллярах это давление возрастает и становится достаточным, чтобы заставить воду и растворенные в крови вещества выйти из капилляров в межклеточное пространство. Образуется так называемая тканевая жидкость, она играет большую роль в доставке питательных веществ в клетки и удалении из них конечных продуктов обмена веществ. После выполнения своих функций тканевая жидкость в виде лимфы возвращается в кровяное русло по лимфатическим сосудам.

Фильтрация играет важную роль и в функционировании почек. В капиллярах почек кровь находится под большим давлением, что вызывает фильтрацию воды и растворенных в ней веществ из кровеносных сосудов в тончайшие почечные канальцы. Затем часть воды и необходимые организму вещества снова всасываются и поступают в общий кровоток, а оставшаяся часть образует мочу и выводится из организма.

Введение

Мембранный транспорт -- транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов -- простой диффузии, облегченной диффузии и активного транспорта.

Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости, то есть способностью пропускать одни вещества и не пропускать другие.

Пассивный транспорт

Различают пассивный и активный транспорт. Пассивный транспорт происходит без затрат энергии по электрохимическим градиентом. К пассивному относятся диффузия (простая и облегченная), осмос, фильтрация. Активный транспорт требует энергии и происходит вопреки концентрационном или электрическом градиента.

Виды пассивного транспорта

Виды пассивного транспорта веществ:

  • · Простая диффузия
  • · Осмос
  • · Диффузия ионов
  • · Облегченная диффузия

Простая диффузия

Диффузия представляет собой процесс, при помощи которого газ или растворенные вещества распространяются и заполняют весь доступный объем.

Молекулы и ионы, растворенные в жидкости, находятся в хаотическом движении, сталкиваясь друг с другом, молекулами растворителя и клеточной мембраной. Столкновение молекулы или иона с мембраной может иметь двоякий исход: молекула либо «отскочит» от мембраны, либо пройдет через нее. Когда вероятность последнего события высока, то говорят, что мембрана проницаема для данного вещества.

Если концентрация вещества по обе стороны мембраны различна, возникает поток частиц, направленный из более концентрированного раствора в разбавленный. Диффузия происходит до тех пор, пока концентрация вещества по обе стороны мембраны не выравнивается. Через клеточную мембрану проходят как хорошо растворимые в воде{гидрофильные) вещества, так и гидрофобные, плохо или совсем в ней нерастворимые.

Гидрофобные, хорошо растворимые в жирах вещества, диффундируют благодаря растворению в липидах мембраны. Вода и вещества хорошо в ней растворимые проникают через временные дефекты углеводородной области мембраны, т.н. кинки, а также черезпоры, постоянно существующие гидрофильные участки мембраны.

В случае, когда клеточная мембрана непроницаема или плохо проницаема для растворенного вещества, но проницаема для воды, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке, чем в окружающей среде, клетка сжимается; если концентрация растворенного вещества в клетке выше, вода устремляется внутрь клетки.

Осмос -- движение молекул воды (растворителя) через мембрану из области меньшей в область большей концентрации растворенного вещества. Осмотическим давлениемназывается то наименьшее давление, которое необходимо приложить к раствору для того, чтобы предотвратить перетекание растворителя через мембрану в раствор с большей концентрацией вещества.

Молекулы растворителя, как и молекулы любого другого вещества, приводятся в движение силой, возникающей вследствие разности химических потенциалов. Когда какое-либо вещество растворяется, химический потенциал растворителя уменьшается. Поэтому в области, где концентрация растворенного вещества выше, химический потенциал растворителя ниже. Таким образом, молекулы растворителя, перемещаясь из раствора с меньшей в раствор с большей концентрацией, движутся в термодинамическом смысле «вниз», «по градиенту».

Объем клеток в значительной степени регулируется количеством содержащейся в них воды. Клетка никогда не находится в состоянии полного равновесия с окружающей средой. Непрерывное движение молекул и ионов через плазматическую мембрану изменяет концентрацию веществ в клетке и, соответственно, осмотическое давление ее содержимого. Если клетка секретирует какое-либо вещество, то для поддержания неизменной величины осмотического давления она должна либо выделять соответствующее количество воды, либо поглощать эквивалентное количество иного вещества. Поскольку среда, окружающая большинство клеток гипотонична, для клеток важно предотвратить поступление в них больших количеств воды. Поддержание же постоянства объема даже в изотонической среде требует расхода энергии, поэтому в клетке концентрация веществ неспособных к диффузии (белков, нуклеиновых кислот и т.д.) выше, чем в околоклеточной среде. Кроме того, в клетке постоянно накапливаются метаболиты, что нарушает осмотическое равновесие. Необходимость расходования энергии для поддержания постоянства объема легко доказывается в экспериментах с охлаждением или ингибиторами метаболизма. В таких условиях клетки быстро набухают.

Для решения «осмотической проблемы» клетки используют два способа: они откачивают в интерстиций компоненты своего содержимого или поступающую в них воду. В большинстве случаев клетки используют первую возможность -- откачку веществ, чаше ионов, используя для этого натриевый насос (см.ниже).

В целом объем клеток, не имеющих жестких стенок, определяется тремя факторами:

  • а) количеством содержащихся в них и неспособных к проникновению через мембрану веществ;
  • б) концентрацией в интерстиций соединений, способных проходить через мембрану;
  • в) соотношением скоростей проникновения и откачки веществ из клетки.

Большую роль в регуляции водного баланса между клеткой и окружающей средой играет эластичность плазматической мембраны, создающей гидростатическое давление, препятствующее поступлению воды в клетку. При наличии разности гидростатических давлений в двух областях среды вода может фильтроваться через поры барьера, разделяющего эти области.

Явления фильтрации лежат в основе многих физиологических процессов, таких, например, как образование первичной мочи в нефроне, обмен воды между кровью и тканевой жидкостью в капиллярах.

Диффузия ионов

Диффузия ионов происходит, в основном, через специализированные белковые структуры мембраны -- ионные каналы, когда они находятся в открытом состоянии. В зависимости от вида ткани клетки могут иметь различный набор ионных каналов. Различают натриевые, калиевые, кальциевые, натрий-кальциевые и хлорные каналы. Перенос ионов по каналам имеет ряд особенностей, отличающих его от простой диффузии. В наибольшей степени это касается кальциевых каналов.

Ионные каналы могут находиться в открытом, закрытом и инак-тивированном состояниях. Переход канала из одного состояния в другое управляется или изменением электрической разности потенциалов на мембране, или взаимодействием физиологически активных веществ с рецепторами. Соответственно, ионные каналы подразделяют на потенциал-зависимые и рецептор-управляемые. Избирательная проницаемость ионного канала для конкретного иона определяется наличием специальных селективных фильтров в его устье.

Облегченная диффузия

Через биологические мембраны кроме воды и ионов путем простой диффузии проникают многие вещества (от этанола до сложных лекарственных препаратов). В то же время даже сранительно небольшие полярные молекулы, например, гликоли, моносахариды и аминокислоты практически не проникают через мембрану большинства клеток за счет простой диффузии. Их перенос осуществляется путем облегченной диффузии. Облегченной называется диффузия вещества по градиенту его концентрации, которая осуществляется при участии особых белковых молекул-переносчиков.

Транспорт Na+, K+, Сl-, Li+, Ca2+, НСО3- и Н+ могут также осуществлять специфические переносчики. Характерными чертами этого вида мембранного транспорта являются высокая по сравнению с простой диффузией скорость переноса вещества, зависимость от строения его молекул, насыщаемость, конкуренция и чувствительность к специфическим ингибиторам -- соединениям, угнетающим облегченную диффузию.

Все перечисленные черты облегченной диффузии являются результатом специфичности белков-переносчиков и ограниченным их количеством в мембране. При достижении определенной концентрации переносимого вещества, когда все переносчики заняты транспортируемыми молекулами или ионами, дальнейшее ее увеличение не приведет к возрастанию числа переносимых частиц -- явление насыщения. Вещества, сходные по строению молекул и транспортируемые одним и тем же переносчиком, будут конкурировать за переносчик -- явление конкуренции.

Различают несколько видов транспорта веществ посредством облегченной диффузии

Унипорт, когда молекулы или ионы переносятся через мебрану независимо от наличия или переноса других соединений (транспорт глюкозы, аминокислот через базальную мембрану эпителиоцитов);

Симпорт, при котором их перенос осуществляется одновременно и однонаправленно с другими соединениями (натрий- зависимый транспорт Сахаров и аминокислот Na+ K+, 2Cl- и котран-спорт);

Антипорт -- (транспорт вещества обусловлен одновременным и противоложно направленным транспортом другого соединения или иона (Na+/Ca2+, Na+/H+ Сl-/НСО3- -- обмены).

Симпорт и антипорт -- это виды котранспорта, при которых скорость переноса контролируется всеми участниками транспортного процесса.

Природа белков-переносчиков неизвестна. По принципу действия они делятся на два типа. Переносчики первого типа совершают челночные движения через мембрану, а второго -- встраиваются в мембрану, образуя канал. Промоделировать их действие можно с помощью антибиотиков-ионофоров, переносчиком щелочных металлов. Так, один из них -- (валиномицин) -- действует как истинный переносчик, переправляющий калий через мембрану. Молекулы же грамицидина А, другого ионофора, встаиваются в мембрану друг за другом, формируя «канал» для ионов натрия.

Большинство клеток обладают системой облегченной диффузии. Однако перечень метаболитов, переносимых с помощью такого механизма, довольно ограничен. В основном, это сахара, аминокислоты и некоторые ионы. Соединения, являющиеся промежуточными продуктами обмена (фосфорилированные сахара, продукты метаболизма аминокислот, макроэрги), не транспортируются с помощью этой системы. Таким образом, облегченная диффузия служит для переноса тех молекул, которые клетка получает из окружающей среды. Исключением является транспорт органических молекул через эпителий, который будет рассмотрен отдельно.

Транспорт? Трансмембранное перемещение различных высокомолекулярных соединений, клеточных компонентов, надмолекулярных частиц, которые не способны проникать сквозь каналы в мембране, осуществляется посредством специальных механизмов, например, с помощью фагоцитоза, пиноцитоза, экзоцитоза, переноса через межклеточное пространство. То есть перемещение веществ сквозь мембрану может происходить при помощи различных механизмов, которые подразделяются по признакам участия в них специфических переносчиков, а также по энергозатратам. Ученые подразделяют транспорт веществ на активный и пассивный.

Основные виды транспорта

Пассивный транспорт представляет собой перенос вещества сквозь биологическую мембрану по градиенту (осмотический, концентрационный, гидродинамический и другие), не требующий расхода энергии.

Представляет собой перенос вещества сквозь биологическую мембрану против градиента. При этом расходуется энергия. Примерно 30 - 40% энергии, которая образуется в результате метаболических реакции в организме человека, тратится на осуществление активного транспорта веществ. Если рассматривать функционирование человеческих почек, то в них на активный транспорт тратится около 70 - 80% потребленного кислорода.

Пассивный транспорт веществ

он подразумевает перенос различных веществ сквозь биологические мембраны по разнообразным могут быть:

  • градиент электрохимического потенциала;
  • градиент концентрации вещества;
  • градиент электрического поля;
  • градиент осмотического давления и прочие.

Процесс осуществления пассивного транспорта не требует каких-либо энергозатрат. Он может происходить при помощи облегченной и простой диффузии. Как нам известно, диффузия представляет собой хаотическое перемещение молекул вещества в разнообразных средах, которое обусловлено энергией тепловых колебаний вещества.

Если частица вещества является электронейтральной, то направление, в котором будет происходить диффузия, определяется разностью концентрации веществ, содержащихся в средах, которые разделены мембраной. К примеру, между отсеками клетки, внутри клетки и вне ее. Если частицы вещества, его ионы имеют электрический заряд, то диффузия будет зависеть не только от разности концентраций, но и от величины заряда данного вещества, наличия и знаков заряда с обеих сторон мембраны. Величина электрохимического градиента определяется алгебраической суммой электрического и концентрационного градиентов на мембране.

Что обеспечивает транспорт через мембрану?

Пассивный транспорт мембраны возможен, благодаря наличию вещества, осмотического давления, возникающего между разными сторонами мембраны клетки или электрического заряда. К примеру, средний уровень содержащихся в плазме крови ионов Na+ составляет около 140 мМ/л, а содержание его в эритроцитах примерно в 12 раз больше. Подобный градиент, выражающийся в разности концентраций, способен создавать движущую силу, обеспечивающую перенос молекул натрия в эритроциты из плазмы крови.

Следует отметить, что скорость подобного перехода весьма низкая из-за того, что для клеточной мембраны характерна низкая проницаемость для ионов данного вещества. Гораздо большей проницаемостью данная мембрана обладает в отношении ионов калия. Энергия клеточного метаболизма не используется для совершения процесса простой диффузии.

Скорость диффузии

Активный и пассивный транспорт веществ через мембрану характеризуется скоростью диффузии. Описать ее можно при помощи уравнения Фика: dm/dt=-kSΔC/x.

В данном случае dm/dt представляет собой количество того вещества, которое диффундирует за одну единицу времени, а k представляет собой коэффициент процесса диффузии, который характеризует проницаемость биомембраны для диффундирующего вещества. S равняется площади, на которой происходит диффузия, а ΔC выражает разность концентрации веществ с разных сторон биологической мембраны, при этом x характеризует расстояние, которое имеется между точками диффузии.

Очевидно, что через мембрану наиболее легко будут перемещаться те вещества, которые диффундируют одновременно по градиентам концентраций и электрических полей. Немаловажным условием для осуществления диффузии вещества сквозь мембрану являются физические свойства самой мембраны, ее проницаемость для каждого конкретного вещества.

В силу того, что бислой мембраны сформирован углеводородными радикалами фосфолипидов, обладающих природы с легкостью диффундируют через нее. В частности, это относится к веществам, которые легко растворяются в липидах, например, тиреоидные и стероидные гормоны, а также некоторые вещества наркотического характера.

Минеральные ионы и низкомолекулярные вещества, имеющие гидрофильную природу, диффундируют посредством пассивных ионных каналов мембраны, которые сформированы из каналообразующих белковых молекул, а иногда сквозь дефекты упаковки мембраны фосфолипидных молекул, которые возникают в клеточной мембране в результате тепловой флуктуации.

Пассивный транспорт через мембрану - процесс очень интересный. Если условия нормальные, то значительные количества вещества могут проникать сквозь бислой мембраны только в том случае, если они неполярные и имеют небольшой размер. В противном случае перенос происходит посредством белков-переносчиков. Подобные процессы с участием белка-переносчика называются не диффузией, а транспортом вещества сквозь мембрану.

Облегченная диффузия

Облегченная диффузия, подобно простой диффузии, происходит по градиенту концентрации вещества. Основное отличие состоит в том, что в процессе переноса вещества принимает участие специальная молекула белка, называемая переносчиком.

Облегченная диффузия является видом пассивного переноса молекул вещества сквозь биомембраны, осуществляемым по градиенту концентрации при помощи переносчика.

Состояния белка-переносчика

Белок-переносчик может находится в двух конформационных состояниях. К примеру, в состоянии А данный белок может обладать сродством с веществом, которое он переносит, его участки для связывания с веществом развернуты внутрь, за счет чего формируется пора, открытая к одной стороне мембраны.

После того, как белок связался с переносимым веществом, изменяется его конформация и происходит его переход в состояние Б. При таком превращении у переносчика теряется сродство с веществом. Из связи с переносчиком оно высвобождается и перемещается в пору уже по другую сторону мембраны. После того, как вещество перенесено, белок-переносчик снова изменяет свою конформацию, возвращаясь в состояние А. Подобный транспорт вещества сквозь мембрану называется унипортом.

Скорость при облегченной диффузии

Низкомолекулярные вещества вроде глюкозы могут транспортироваться сквозь мембрану посредством облегченной диффузии. Такой транспорт может происходить из крови в мозг, в клетки из интерстициальных пространств. Скорость переноса вещества при таком виде диффузии способна достигать до 10 8 частиц через канал за одну секунду.

Как мы уже знаем, скорость активного и пассивного транспорта веществ при простой диффузии пропорциональна разности концентраций вещества с двух сторон мембраны. В случае же облегченной диффузии эта скорость увеличивается пропорционально увеличивающей разности концентрации вещества до определенного максимального значения. Выше этого значения скорость не увеличивается, даже несмотря на то что разность концентраций с разных сторон мембраны продолжает увеличиваться. Достижение такой максимальной точки скорости в процессе осуществления облегченной диффузии можно объяснить тем, что максимальная скорость предполагает вовлечение в процесс переноса всех имеющихся белков-переносчиков.

Какое понятие еще включают в себя активный и пассивный транспорт через мембраны?

Обменная диффузия

Подобный вид транспорта молекул вещества сквозь клеточную мембрану характеризуется тем, что в обмене участвуют молекулы одного и того же вещества, которые находятся с разных сторон биологической мембраны. Стоит отметить, что при таком транспорте веществ с обеих сторон мембраны абсолютно не изменяется.

Разновидность обменной диффузии

Одной из разновидностей обменной диффузии является обмен, при котором молекула одного вещества меняется на две и более молекул иного вещества. К примеру, один из путей, по которому происходит удаление положительных ионов кальция из гладкомышечных клеток бронхов и сосудов из сократительных миоцитов сердца - это обмен их на ионы натрия, расположенные вне клетки. Один ион натрия в этом случае обменивается на три иона кальция. Таким образом, происходит движение натрия и кальция сквозь мембрану, которое носит взаимообусловленный характер. Подобный вид пассивного транспорта сквозь клеточную мембрану называется антипортом. Именно таким образом клетка способна освободиться от ионов кальция, которые имеются в избытке. Этот процесс является необходимым для того, чтобы гладкие миоциты и кардиомиоциты расслаблялись.

В данной статье был рассмотрен активный и пассивный транспорт веществ через мембрану.

Мембранным транспортом называют переход ионов и молекул вещества через мембрану из среды в клетку и в обратном направлении.

В зависимости от характера связи транспорта иона или молекулы с переносом др. ионов и молекул выделяют:

1) унипорт – транспорт независимо от транспорта др. соединений;

2) котранспорт – согласованный (взаимозависимый) транспорт через мембрану; к нему относят симпорт (одновременный и однонаправленный перенос двух различных веществ) и антипорт (одновременный транспорт через мембрану в противоположных направлениях).

В зависимости от изменения свободной энергии системы выделяют два типа транспорта:

Пассивный транспорт (простую диффузию) .

Активный транспорт – перенос неэлектролитов и ионов против градиента хим. или электрохим. потенциала, сопряженный с энергетическими затратами (перенос через мембрану аминокислот и моносахаридов).

31. Пассивный транспорт. Уравнение Фика, Нернста-Планка, Теорелла .
Пассивный транспорт
– перенос неэлектролитов и ионов через мембрану по градиенту хим. или электрохим. потенциала, сопровождающийся уменьшением свободной энергии(простую диффузию) .

Движущей силой простой диффузии является разность хим. потенциалов данного вещества в двух областях, между которыми происходит диффузия. Хим. потенциал – величина, численно равная свободной энергии, приходящейся на 1 моль вещества; определяется как частная производная от свободной энергии.

Основной термодинамический принцип, управляющий стационарным распределением диффундирующих молекул в системе с мембраной, заключается в том, что химические потенциалы данного вещества по обе стороны мембраны должны быть равны.

Если через мембрану, разграничивающую отсеки I и II, переносится dn молей вещества, то этот процесс сопровождается изменением свободной энергии системы на величину:

dG = (II - I) dn.

Диффузия прекращается и система переходит в состояние термодинамического равновесия, когда II = I .

I закон Фика имеет вид:

Поток вещества можно представить с учетом коэффициента проницаемости (Р) мембраны для данного вещества:

,

где с I и с II – концентрации диффундирующего вещества в водном растворе. [P] = см/с.

Коэффициент проницаемости зависит от свойств мембраны и переносимых веществ:

где D – коэффициент диффузии, - коэффициент распределения вещества между водным раствором и мембраной, характеризующий растворимость вещества в липидной фазе мембраны, d – толщина мембраны.



Движущей силой пассивного потока ионов через мембрану служит градиент электрохимического потенциала. Электрохимический потенциал иона для условий, при которых активность иона соответствует его концентрации (с), равен:

где - электрический потенциал, z – валентность иона, F - число Фарадея, 0 - стандартный химический потенциал.

Электрохимический потенциал – это мера работы, необходимой для переноса 1 моля из раствора с данной концентрацией и данным электрическим потенциалом в бесконечно удаленную точку в вакууме. Эта работа складывается из затрат на преодоление сил химического взаимодействия (0 + RTlnc) и на перенос зарядов в электрическом поле (zF).

Диффузию ионов в растворе и в гомогенной незаряженной мембране описывает уравнение электродиффузииНернста-Планка :

,

где u – подвижность иона, D = uRT. Первый член в правой части уравнения описывает свободную диффузию, второй – миграцию ионов в электрическом поле.

Уравнение Теорелла: Плотность потока при пассивном транспорте: J = - cU(dm/dx), где m - электрохимический потенциал, U – подвижность частиц, с – концентрация.

32. Виды пассивного транспорта через мембрану. Простая и облегченная диффузия.

Пассивный транспорт – это перенос неэлектролитов и ионов через мембрану по градиенту химического или электрохимического потенциала, сопровождающийся уменьшением свободной энергии. К пассивному транспорту относят простую диффузию через липидный бислой и облегченную диффузию по каналам в мембране и при помощи переносчиков. Процессы простой и облегченной диффузии направлены на выравнивание градиентов и установление равновесия в системе.
Диффузия - самопроизвольное перемещение вещества из мест с большей концентрацией в места с меньшей концентрацией вещества вследствие хаотического теплового движения молекул.
Отличия облегченной диффузии от простой:
1) перенос вещества с участием переносчика происходит быстрее;
2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;



3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; При этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других; Так, из сахаров глюкоза переносится лучше, чем фруктоза, фруктоза лучше, чем ксилоза;

33. Ионные каналы: механизм работы, селективность.
Ионные каналы – это интегральные гликопротеины, способные в результате внешних воздействий (изменение потенциала на мембране) изменять проницаемость мембраны для различных ионов. Ионные каналы обеспечивают реализацию важнейших физиологических процессов: передачу электрических и хим/ сигналов, сокращение, секрецию.

Ионным каналам биомембран свойственны избирательная проницаемость для ионов (селективность) и способность открываться и закрываться при различных воздействиях на мембрану. - «Воротный» механизм каналов управляется сенсором внешнего стимула (рецептором первичного посредника).

Ионные каналы работают по механизму облегченной диффузии. Движение по ним ионов при активации каналов идет по градиенту концентрации. Скорость перемещения через мембрану составляет 10 ионов в секунду. Селективность канала определяется наличием избирательного фильтра. Его роль выполняет начальный участок канала, который имеет определенный заряд, конфигурацию и размер (диаметр), что позволяет пройти в канал только определенному виду ионов. Некоторые из ионных каналов неселективные, например, каналы "утечки". Это такие каналы мембраны, по которым в состоянии покоя по градиенту концентрации из клетки выходят ионы К+, однако по этим каналам в клетку в состоянии покоя по градиенту концентрации входит и небольшое количество ионов Na+.

34. Основные семейства ионных каналов .

Ионный канал - это интегральный белок, образующий в мембране пору для обмена клетки с окружающей средой ионами K + , Na + , H + , Ca 2+ , Cl - , а также водой, и способный изменять свою проницаемость.

Натриевые каналы имеют простое строение: белок из трёх разных субъединиц, которые образуют структуру, похожую на пору - то есть трубку с внутренним просветом. Канал может находиться в трёх состояниях: закрытом, открытом и инактивированном (закрыт и невозбудим). Это обеспечивается локализацией отрицательных и положительных зарядов в самом белке; эти заряды притягиваются к противоположным, существующим на мембране, и таким образом канал при изменении состояния мембраны открывается и закрывается. Когда он открыт, ионы натрия могут беспрепятственно проникать через него в клетку по градиенту концентрации.

Калиевые каналы устроены проще: это отдельные субъединицы, имеющие в разрезе трапециевидную форму; они расположены почти вплотную друг к другу, но между ними всегда остаётся зазор. Калиевые каналы не закрываются до конца, в состоянии покоя калий свободно уходит из цитоплазмы (по градиенту концентрации).

Кальциевые каналы - это трансмембранные белки сложного строения, состоящие из нескольких субъединиц. Через эти каналы поступают также ионы натрия, бария и водорода. Различают потенциал-зависимые и рецептор-зависимые кальциевые каналы. Через потенциал-зависимые каналы ионы Са 2+ проходят сквозь мембрану, как только ее потенциал снижается ниже определенного критического уровня. Во втором случае поток Са 2+ через мембраны регулируется специфическими агонистами (ацетилхолин, катехоламины, серотонин, гистамин и др.) при их взаимодействии с рецепторами клетки. В настоящее время выделяют несколько типов кальциевых каналов обладающих разными свойствами (проводимость, длительность открытия) и имеющих разную тканевую локализацию.


Close