Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Окружающий нас мир - это мир геометрии чистой, истинной, безупречной в наших глазах. Всё вокруг - геометрия. Никогда мы не видим так ясно таких форм, как круг, прямоугольник, угол, цилиндр, выполненных с такой тщательностью и так уверенно.

архитектор Ле Корбюзье

В 7 классе мы начали изучать геометрию. Рассматривая геометрические фигуры, изучая их свойства, я пытался представить, как можно использовать свойства этих фигур в жизни. И можно ли найти их в окружающем пространстве. Прогуливаясь по улицам города, рассматривая различные здания, я заметил, что в очертаниях зданий, мостов, башен можно найти геометрические формы. Именно в архитектурных сооружениях геометрия проявляет себя наиболее ярко. Мне захотелось более подробно изучить, как связаны архитектура и геометрия.

Актуальность исследования.

Моя проектная работа посвящена изучению взаимосвязи геометрии и архитектуры. Эта проблема очень актуальна, т.к. современный век - это век развития строительства. И именно геометрия даёт большие возможности для развития современной архитектуры.

Цель.

Изучить взаимосвязь геометрии и архитектуры нашего города.

Задачи.

1. Изучить информацию по данной теме в литературных источниках, учебниках, интернете.

2. Изучить свойства и отличительные признаки геометрических фигур и тел.

3. Исследовать наиболее интересные здания Астрахани (исследовать архитектурные строения Астрахани).

4. Выяснить, какие геометрические формы находятся в основе зданий.

Объект исследования.

Геометрические формы в архитектуре.

Предмет исследования.

Здания Астрахани.

Методы исследования.

Сбор информации, изучение литературных источников и интернет-ресурсов, анализ информации, практическая работа, наблюдение.

Гипотеза.

Я предполагаю, что все архитектурные строения выполняются по законам геометрии. В основе этих строений лежат геометрические формы. Комбинации этих форм и использование их свойств, способствует развитию архитектуры.

Теоретическая и практическая значимость.

1. Выполняя проект, я получу больше знаний в области геометрии и познакомлюсь с профессией архитектора.

2. Узнаю лучше свой город.

3. Полученную информацию и результаты моего исследования можно использовать на уроках геометрии.

Глава 1. Развитие геометрии и архитектуры.

1.1. Геометрия.

Геометрия (греч. geometria, от ge — Земля и metreo — мерю), раздел математики, изучающий пространственные отношения и формы.

Происхождение термина «Геометрия ", что буквально означает «землемерие», можно объяснить следующими словами, приписываемыми древнегреческому учёному Евдему Родосскому (4 в. до н. э.): «Геометрия была открыта египтянами и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития р. Нил, постоянно смывавшего границы». Уже у древних греков геометрия означала математическую науку. Судя по сохранившимся отрывкам древнеегипетских сочинений, геометрия развилась не только из измерений Земли, но также из измерений объёмов и поверхностей при земляных и строительных работах и т.п.

Геометрия в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур.

Самыми простейшими фигурами являются точка и линия. Из них формируются лучи, отрезки, углы, многоугольники. На плоскости в геометрии мы рассматриваем такие фигуры, как треугольник и его виды, различные виды четырёхугольников, пятиугольники и т.д., а также окружность и круг. На рисунках 1 и 2 представлена лишь малая часть из них.

Рисунок 1.

Рисунок 2.

В пространстве геометрия изучает объёмные тела (многогранники и тела вращения). К ним относятся: куб, параллелепипед, призма, пирамида, цилиндр, конус, шар и др. Их изучением занимается такой раздел науки, как стереометрия. Объёмные тела могут составлять различные комбинации, образуя новые.

Рисунок 3 .

Наиболее распространёнными геометрическими преобразованиями являются симметрия ((от греч. symmetria - соразмерность) - свойство форм предмета иметь части, повторяющиеся при повороте на определенный угол вокруг своей оси и, отражения его в плоскости или точке) и подобие (изменение размеров фигуры при сохранении формы).

Рисунок 4. Осевая симметрия Рисунок 5. Центральная симметрия

Рисунок 6. Преобразование подобия

Каждая фигура в геометрии обладает определёнными свойствами, которые и используются в архитектуре.

1.2. Архитектура.

Архитектура - (лат. architectura от др.-греч. ἀρχι — старший, главный и τέκτων — строитель, плотник) — комплекс знаний о художественно-пространственном проектировании зданий и сооружений. В современном понимании архитектура является разновидностью дизайна, в области проектирования помещений, комплексов помещений, зданий, сооружений, комплексов зданий и сооружений, а так же населенных пунктов и комплексов населенных пунктов, основным предназначением которых является обеспечение различных потребностей человек.

Древнейшее искусство проектирования и возведение зданий, каковым является архитектура , началось тогда, когда появился человек.

Рисунок 7.

Еще первобытные люди использовали в качестве жилья или защиты шалаши, ямы и различные укрытия. Археологам удалось исследовать лишь малую долю строений того времени. Это объясняется в первую очередь примитивными методами строительства и простейшими строительными материалами, которые имели короткий срок службы.

С развитием цивилизации происходило и развитие архитектуры. Каждый этап развития человеческой цивилизации имеет свой характерный архитектурный стиль, который символизирует конкретный исторический период, его основные черты, идеологию и характер.

Архитектурный стиль — это совокупность основных черт и признаков архитектуры определённого времени и места, проявляющихся в особенностях её функциональной, конструктивной и художественной сторон (приёмы построения планов и объёмов композиций зданий, строительные материалы и конструкции, формы и отделка фасадов, декоративное оформление интерьеров).

Архитектурные памятники способны сообщить информацию о том, что было главным в жизни людей в момент их постройки, что для них являлось истиной красотой и искусством, какой был характер их жизни и многое другое. Ярким примером этого являются египетские пирамиды, а древние греки часто использовали в архитектуре колонны, римляне широко применяли арки и арочные конструкции (своды и купола), Западная Европа средневековья возводила замки и крепости, соборы и костёлы, и, наконец, современные технологии позволили соединить как стили, так и технику строительства.

Приезжая в любой город мы видим дворцы, ратуши, частные коттеджи, построенные в самых различных архитектурных стилях. И именно по этим стилям мы и определяем эпоху их строительства, социально-экономический уровень страны, нравы, традиции и обычаи того или иного народа, его культуру, историю, национальную и духовную наследственность, даже темпераменты и характеры людей этой страны.

1.3. Связь геометрии и архитектуры.

Ни один из видов искусств так тесно не связан с геометрией как архитектура. Архитектурные произведения живут в пространстве, являются его частью, вписываясь в определенные геометрические формы. Кроме того, они состоят из отдельных деталей, каждая из которых также строится на базе определенного геометрического тела. Часто геометрические формы являются комбинациями различных геометрических тел. Кроме того, форма любого архитектурного сооружения имеет своей моделью определенную геометрическую фигуру. Математик бы сказал, что данное сооружение «вписывается» в геометрическую фигуру.

Рассмотрим наиболее интересные архитектурные сооружения и геометрические тела, лежащие в их основе, а также геометрические преобразования.

Пирамида. Египетские пирамиды - фантастические фигуры из камня, устремленные к Солнцу. Своими громадными размерами, совершенством геометрической формы они поражают воображение. Недаром эти творения рук человеческих считали одним из чудес света. Такая конструкция — одна из самых устойчивых.

Рисунок 8.

Конус. Очень часто конус используют в основе крыш домов. Особенно хорошо это видно в средневековых крепостях. Над крепостными стенами возвышаются круглые башни. Они покрыты коническими крышами, которые напоминают воронки, перевернутые острым концом вверх.

Рисунок 9.

Шар. Здание - шар в Берлине, Германия (Планетарий имени Карла Цейса).

Рисунок 10.

Пятиугольник. Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника.

Рисунок 11.

Рассмотрим примеры симметрии и подобия в архитектурных строениях. Тадж-Маха́л — мавзолей-мечеть, находящийся в Агре, Индия, на берегу р. Ямуна.

Рисунок 12.

Наиболее ярким примером подобия являются купола на храмах. Например, как на Софийском соборе в Великом Новгороде.

Рисунок 13.

В архитектуре используются почти все геометрические фигуры. Выбор использования той или иной фигуры в архитектурном сооружении зависит от множества факторов: эстетичного внешнего вида здания, его прочности, удобства в эксплуатации и т. д. Каждая геометрическая фигура обладает уникальным, с точки зрения архитектуры, набором свойств. А каждое архитектурное сооружение должно быть прочным, безопасным и долговечным.

Я решил исследовать архитектурные строения нашего города и определить, какие геометрические фигуры и тела лежат в их основе.

Глава 2. Геометрия в архитектуре Астрахани.

2.1. Методы исследования.

Ни один из видов искусств так тесно не связан с геометрией как архитектура. Архитектурные сооружения состоят из отдельных деталей, каждая из которых строится на базе определенных геометрических фигур либо на их комбинации. Кроме того, форма любого архитектурного сооружения имеет своей моделью определенную геометрическую фигуру.

Наблюдая архитектурные сооружения нашего города, меня заинтересовало следующее: какие геометрические формы использованы в архитектуре нашего города.

Начиная работать над проектом, я собрал необходимую информацию в интернете, изучил учебники по геометрии. Изучил основные геометрические фигуры и их свойства, а также геометрические тела.

Затем я провёл опрос среди своих знакомых, друзей и одноклассников. При опросе респондентам предлагалось ответить на вопросы, связанные с геометрией и архитектурой нашего города. Результаты опроса приведены ниже.

1. Считаете ли Вы, что геометрия связана с архитектурой?

б) нет - 12%

в) затрудняюсь ответить - 9%

2. Какие архитектурные сооружения нашего города Вам нравятся больше всего?

а) Театр оперы и балета - 56%

б) Кремль - 34%

в) Кафедральный собор князя Владимира - 6%

г) Гранд Отель - 3%

д) другое - 1%

3. Как Вы думаете, какие геометрические формы чаще всего можно встретить в архитектурных строениях нашего города?

а) окружность, круг, шар, сферу - 1%

б) прямоугольник, прямоугольный параллелепипед - 82%

в) квадрат, куб - 14%

г) треугольник, пирамида, конус - 1%

д) разные формы и их комбинации - 2%

4. Представьте, что Вы архитектор. Какую бы геометрическую форму Вы выбрали для постройки современного здания?

а) окружность, круг, шар, сферу - 5%

б) прямоугольник, прямоугольный параллелепипед - 12%

в) квадрат, куб - 9%

г) треугольник, пирамида, конус - 16%

д) разные формы и их комбинации - 58%

5. Считаете ли Вы, что архитектор при проектировании зданий и других сооружений должен учитывать свойства и особенности геометрических форм?

в) затрудняюсь ответить - 9%

Анализируя результаты опроса, можно отметить, что большинство респондентов считают, что геометрия связана с архитектурой, при этом необходимо учитывать свойства геометрических фигур при построении архитектурных сооружений.

Я выбрал несколько наиболее интересных зданий Астрахани и исследовал, какие геометрические формы лежат в их основе.

2.2. Обзор архитектурных сооружений Астрахани.

1. Астраханский кремль. Уникальное архитектурное строение, построенное в 1620 году по проекту зодчего Дорофея Мякишева. Положение Астраханского кремля на возвышенности сыграло важную роль в формировании плана постройки: кремль Астрахани приобрел форму вытянутого треугольника, одна сторона которого тянется параллельно левому берегу Волги.

По углам белокаменные стены кремля укреплены башнями. Одни из башен были глухими - Архиерейская, Артиллерийская, Крымская, другие же имели проезд - Красные, Никольские, Пречистенские ворота. Проездные башни отличались особой мощностью и высотой. Все башни Астраханского кремля были поделены на несколько уровней, соединявшиеся между собой каменными лестницами. Глубокие ниши в каменных стенах были сделаны с целью размещения в них боевых пушек. Верхушки башен окаймляли зубцы, на которых были закреплены шатры со сторожевыми вышками. За 370 лет своего существования кремль в Астрахани неоднократно перестраивался и реставрировался без сохранения своих исконных форм. Поэтому до наших дней кремль уцелел далеко не в своем первоначальном облике.

Астраханский кремль поражает многообразием геометрических форм. Здесь можно рассмотреть и параллелепипед, и конус, и пирамиду, и цилиндр, а также всевозможные их комбинации. В основе зданий Астраханского кремля чётко определяются прямоугольные параллелепипеды. Башни построены в форме цилиндров и призм. В основе крыши башен - пирамида.

2. Музыкальный театр оперы и балета. Здание Астраханского государственного театра Оперы и Балета - многофункциональный культурно-зрелищный комплекс. Театр построен в «псевдорусском» стиле. Это современное прочтение той художественной традиции, что была повсеместно распространена в России на рубеже XIX и XX веков, во время так называемого “серебряного века” - периода не только экономического подъема, но и огромного интереса общества к русской истории и культуре, а также архитектуре Древней Руси. Во внешнем облике театра заметны черты колоколен и соборов астраханского кремля, а также таких московских шедевров архитектуры, как зданий ГУМа и Исторического музея.

Глядя на это здание, так и хочется восхищаться: «Какая гармония!» Гармония - основа прекрасного. Какова соразмерность частей и целого, слияния различных компонентов объекта в единое органическое целое! Здесь и прямые призмы, и прямоугольные параллелепипеды, и полные, и усеченные пирамиды. А в целом это прекрасное произведение архитектуры, в котором соединены множество деталей, как невидимых, так и видимых в единое композиционное целое.

Следует отметить, что в архитектуре здания театра использованы законы осевой симметрии. Что делает это здание наиболее привлекательным для нашего взора. Согласно моему опросу, большинство респондентов считает здание театра оперы и балета наиболее красивым в нашем городе. Это объясняется тем, что симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.

Симметричные объекты обладают высокой степенью целесообразности - ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в различных направлениях.

3. Аль Паш Гранд Отель. Говоря о красоте симметрии, нельзя не представить наиболее яркое и современное здание нашего города - Аль Паш Гранд Отель.

Это здание построено по всем законам осевой симметрии. Видно как чётко прорисовывается основа - прямоугольный параллелепипед. Срезанные углы, трапеции, прямоугольники. Строго очерченные линии. Этот дом становится как бы промежуточным звеном между строгой и прямолинейной городской архитектурой и берегом реки, на котором он расположен.

4. Астраханский планетарий и Астраханский государственный цирк. Мне стало интересно, а можно ли найти примеры использования в основе зданий окружностей, шара или хотя бы их частей.

Примерами таких зданий в нашем городе являются Астраханский планетарий и Астраханский государственный цирк.

Здание планетария украшает полусфера, которая опирается на цилиндрические колонны. Полусфера символизирует свод неба, а также планеты.

Также символический характер носит и форма здания цирка. Здесь полусфера является вертикальным продолжением манежа. Полусфера - это земля гимнастов. Все воздушные номера исполняются в пространстве купола. Уже сам факт исполнения трюков не на надежном манеже, а на зыбких гимнастических снарядах, конечно же, увеличивает их эффектность. Этому же способствует резко выраженный нижний ракурс, в котором зритель воспринимает работу гимнастов. Попирая законы тяготения, артисты парят в полусфере купола.

Астраханский планетарий

Астраханский государственный цирк

Рассматривая здания нашего города, я сделал вывод, что чаще всего в архитектуре нашего города при строительстве зданий используют такие геометрические формы, как призмы, параллелепипеды, цилиндры. А симметричные здания - наиболее красивые и прочные.

Архитектура — удивительная область человеческой деятельности. В ней тесно переплетены и строго уравновешены наука, техника и искусство. Только соразмерное, гармоническое единство этих начал делает возводимое человеком сооружение памятником архитектуры, неподвластным времени, подобно памятникам литературы, ваяния, музыки.

Самым тесным образом геометрия связана с архитектурой. Разнообразные геометрические формы, пропорции и законы симметрии в определенной мере задают внутреннюю красоту архитектурной формы. Без нее внешние украшения зданий не улучшают, а порой усугубляют внешнее впечатление о том или ином сооружении.

Ни один из видов искусств так тесно не связан с геометрией как архитектура. Восторженные слова, настоящий гимн геометрии, провозгласил знаменитый архитектурный реформатор Ле Корбюзье. «Окружающий нас мир – это мир геометрии чистой, истинной, безупречной в наших глазах. Все во- круг – геометрия. Никогда мы не видели так ясно таких форм, как круг, прямоугольник, угол, цилиндр, выполненных с такой тщательностью и так уверенно».

Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями (как он говорит, «представителями чистой геометрии», на базе которых строятся архитектурные формы.

Известное изречение Ф. Энгельса о предмете математики содержит утверждение, что математика, наряду с количественными отношениями, изучает пространственные формы. Последним, как мы знаем, занимается геометрия. Мы знаем очень много плоских и пространственных фигур, которые иногда называют геометрическими телами. Они, с одной стороны являются абстракциями от реальных объектов, которые нас окружают, а, с другой, являются прообразами, моделями формы тех объектов, которые создает своими руками человек. Например, бревно может служить основой для формирования представления о геометрическом цилиндре, а цилиндр является моделью для создания колонн, которые широко используются в архитектурных сооружениях.

Архитектурные произведения живут в пространстве, являются его частью, вписываясь в определенные геометрические формы. Кроме того, они состоят из отдельных деталей, каждая из которых также строится на базе определенного геометрического тела. Часто геометрические формы являются комбинациями различных геометрических тел. Давайте попробуем разобраться сначала в этом вопросе.

«Музыка, застывшая в камне» - так называют храм Покрова Богородицы, стоящий на живописном берегу владимирской речки Нерль. Жемчужина древнерусского зодчества 12 в. поражает своим совершенством. Как прочно в ней слились архитектура и математика. Точные пропорции и старинные меры образуют своеобразный «математический каркас» церкви. А детальный анализ постройки с помощью геометрических инструментов и вычислений лишний раз подтверждает неразрывное единство математики и искусства.

Подобные храмы впервые появились на Руси в 10 – 11 вв. теперь их называют крестово-купольными.

В чем особенность архитектуры таких храмов? План храма состоит из трех частей – нефов.

В закруглениях восточной части (апсидах) помещается алтарь. Главная часть храмовой постройки – куб. в центре его верхней грани расположен барабан, на котором помещается купол. Венчает конструкцию крест. Если спроектировать барабан и купол на основание храма, то они изобразятся кругом, помещенным в центральную часть символического квадрата. В нем ощущается присутствие креста, который пересекает круг- отражение купола.

Архитектура храма глубоко символична: куб воплощает землю, а купол – небо. В самом храме земля и небо соединяются как в архитектурном строе, так и в сознании людей. Но не просто соединяются, они создают единое пространство, в котором верующие находят покой и надежду, сострадание и утешение, любовь и веру.

Лаконичная «кубическая» композиция одноглавого храма Покрова на Нерли порадует своей простотой и строгостью.

Правильные формы, подчиненные единому и точному замыслу. Как все просчитано, уравновешенно и продуманно. И это не случайно: при постройке здания зодчие использовали собственные, годами формирующиеся меры и геометрические приемы.

Удивительно, насколько совершенным кажется творение древних зодчий в результате такого математического анализа. Посмотрите на церковь с различных сторон. Не правда ли, сколько в ней тонкой гармоничной изящности. Как прочно здесь слились архитектура и математика!

Отвлечемся от математики и взглянем на церковь как на прекрасное произведение искусства, гармонично вписывающееся в природный пейзаж.

Церковь стоит на острове, который образовался в результате таяния снегов. Кругом вода- холодная, грязная, впитавшая в себя долгую зиму. Деревья стоят застывшие и хмурые. И только церковь, будто хрупкий белый кораблик, плывет по широкой глади образовавшегося моря. В воздухе пахнет весной. Кругом удивительная тишина, покой и умиротворение Они словно охраняют людей от темных злых сил. И не смеет все больше и больше прибывающая вода затопить и разрушить это архитектурное великолепие. Математическая мелодия архитектурных форм застыла в статичном целомудрии.

Конечно, описанный выше «математический каркас» плана весьма приближенно передаст истинную картину сложной архитектуры Покрова на Нерли. Без человеческого вдохновения, мастерства и веры вряд ли могла бы родиться такая красота. Зодчий, созидающий божественное и прекрасное, живет любовью, которая преобладает в его мироощущении. Благодаря этому он приводит в творческое движение свои разум и волю, покоряясь возвышенному чувству движения к совершенству

Рассмотрим как зодчие использовали «математический каркас» храма Покрова на Нерли для построения храмов Амурской области и г. Тынды

Говоря о вписанности архитектурного сооружения в определенное геометрическое тело, обычно отступают от точного геометрического представления об этом понятии. Речь идет о том, что архитектурные сооружения можно представить как помещенное в определенное геометрическое тело как можно ближе к его границам.

Некоторые архитектурные сооружения имеют довольно простую форму. Например, на фотографии изображена башня с часами, которая является обязательным атрибутом любого американского университета. Отвлекаясь от некоторых деталей, можно сказать, что она имеет форму прямой четырехугольной призмы, которую еще называют прямоугольным параллелепипедом.

Форму прямоугольного параллелепипеда имеет бывшее здание женского епархиального училища г. Благовещенска, построено в 1906 году.

Наши 9-ти и 16-ти этажки. Они словно парят в воздухе. Человечество всегда мечтало о легкой и воздушной архитектуре, и эти мечты сбылись. Ничего сложного- прямоугольный параллелепипед, а как красиво стремление ввысь.

На этой фотографии изображено здание клуба имени И. В. Русакова в Москве. Это здание построено в 1929 г. по проекту архитектора К. Мельникова.

Базовая часть здания представляет собой прямую невыпуклую призму. Призма является невыпуклой, благодаря выступам, которые заполнены вертикальными рядами окон. При этом гигантские нависающие объемы также являются призмами, только выпуклыми.

Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то она действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник.

Само же оно имеет форму многогранника.

В названии усыпальниц египетских фараонов тоже используется название пространственной геометрической фигуры – пирамиды (например, Пирамида Хеопса).

Но чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в Спасской башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.

Начало 20 века. Универсальный магазин Кунста и Альберса. г. Благовещенск. В этом здании сочетаются прямоугольный параллелепипед, полуцилиндр, треугольная призма, усеченная пирамида, многогранник.

Большое удовлетворение испытываем глядя на наш железнодорожный вокзал.

Какая гармония! Греческому слову «гармония» три тысячи лет. Гармония основа прекрасного. Какова соразмерность частей и целого, слияния различных компонентов объекта в единое органическое целое! Здесь и прямые призмы, и прямоугольные параллелепипеды, и полные, усеченные пирамиды. А в целом это прекрасное произведение архитектуры, в котором соединены множество деталей, как невидимых, так и видимых в единое композиционное целое.

При более детальном рассмотрении Спасской башни и изучении деталей можно увидеть: круги- циферблаты курантов; шар – основание для крепления рубиновой звезды; полукруги- арки одного из рядов бойниц на фасаде башни и т. д. таким образом можно говорить о пространственных геометрических фигурах, которые служат основой сооружения в целом или отдельных его частей, а также плоских фигурах, которые обнаруживаются на фасадах зданий.

Нужно сказать, что у архитекторов есть излюбленные детали, которые являются основными составляющими многих сооружений. Они имеют обычно определенную геометрическую форму. Например, колонны это цилиндры, купола- полусфера или просто часть сферы, ограниченная плоскостью, шпили – либо пирамиды, либо конусы.

У архитекторов различных эпох были и свои излюбленные детали, которые отражали определенные комбинации геометрических форм.

Например, зодчие древней Руси часто использовали для куполов церквей и колоколен так называемые шатровые покрытия. Это покрытие в виде четырехгранной или многогранной пирамиды. Такое покрытие, например, имеет церковь Вознесения в селе Коломенское. Другой излюбленной формой древнерусского стиля являются купола в форме луковки. Луковка представляет собой часть сферы, плавно переходящую и завершающуюся конусом.

На фотографии Храм нашего города. При его создании зодчие использовали купола в виде луковок и пирамиды, т. е. шатровое покрытие в виде усеченной пирамиды.

Главная ценность архитектурных сооружений в их красоте. Без искусства нет архитектуры. Существуют конкретные математические модели, соотношения и свойства, которые используются в архитектуре и определяют их эстетическое совершенство. Это разнообразные геометрические формы, пропорции и законы симметрии, которые в определенной мере задают внутреннюю и внешнюю красоту архитектурной формы. Как сказал Аристотель «важнейшие виды прекрасного- это слаженность, соразмерность и определенность». Математика больше всего и выявляет именно. Их характерными деталями архитектуры различных эпох являются циркулярные арки. Циркулярная арка представляет прямоугольник и полукруг.

Рассмотрим на примере здание Амурского областного краеведческого музея.

Наружный вид дома отражает творческий почерк автора, неповторимый индивидуальный отпечаток его личности. Циркулярные арки, контрастные цвета, делают прекрасным архитектурное сооружение.

Рассмотрим еще один яркий архитектурный стиль – средневековая готика. Готические сооружения были устремлены ввысь, поражали величественностью, главным образом за счет высоты. И в их формах также широко использовались пирамиды и конусы, которые соответствовали общей идее – стремлению вверх. Характерными деталями для готических сооружений являются стрельчатые арки порталов, высокие стрельчатые окна, закрытые цветными витражами.

Какие геометрические фигуры позволяли построить стрельчатую арку? В отличие от циркульной арки, которая представляла полуокружность, стрельчатая была образованна из двух дуг одной окружности, которые сходились в одной точке.

Наконец, обратимся к геометрическим формам в современной архитектуре. Во – первых, в архитектурном стиле «Хай. Тек», где вся конструкция открыта для обозрения. Здесь мы можем видеть геометрию линий, которые идут параллельно или пересекаются, образуя ажурное пространство сооружения. Примером, своеобразной прародительницей этого стиля может служить Эйфелева башня.

Во – вторых, современный архитектурный стиль, благодаря возможностям современных материалов, использует причудливые формы, которые воспринимаются нами через их сложные, изогнутые «выпуклые и вогнутые» поверхности. Их математическое описание сложно. Чтобы представить эти поверхности достаточно обратиться к зданиям, возведенным Антонио Гауди, Ле Корбюзье и другими современными архитекторами.

Конструкция привлекла внимание советского архитектора Сомова В. А. , он взял ее за основу проекта административного здания в одном из итальянских городов. Шесть длинных балок с квадратным сечением (правильная четырехугольная призма) пронизывают карниз сложного звездчатого многогранника, касаясь его ребер, но, нигде не разрушая их замысловатую сеть.

Симметрия – царица архитектурного совершенства.

Рассматривая симметрию в архитектуре, нас будет интересовать геометрическая симметрия – симметрия формы как соразмерность частей, целого. Замечено, что при выполнении определенных преобразований над геометрическими фигурами, их частей, переместившись в новое положение, вновь будут образовывать первоначальную фигуру. Например, если провести прямую через высоту равнобедренного треугольника к основанию, и части местами, то мы получим тот же (в смысле формы и размеров) равнобедренный треугольник; пятиконечная звезда при повороте на угол 72 градуса вокруг центральной точки (точки пересечения ее лучей) займет первоначальное положение.

В приведенных примерах рассматриваются разные виды симметрии. В первом случае речь идет об осевой симметрии. Части, которые, если можно так сказать, взаимозаменяют друг друга, образованы некоторой прямой. Эту прямую принято называть осью симметрии. В пространстве аналогом оси симметрии является плоскость симметрии. Таким образом, в пространстве обычно рассматривается симметрия относительно плоскости симметрии. Например, куб симметричен относительно плоскости, проходящей через его диагональ. Имея в виду оба случая (плоскости и пространства), этот вид симметрии иногда называют зеркальной. Название это оправдано тем, что обе части фигуры, находящейся по разные стороны от оси симметрии или плоскости симметрии, похожи на некоторый объект и его отражение в зеркале.

Кроме зеркальной симметрии рассматривается центральная или поворотная симметрия. В этом случае переход частей в новое положение и образование исходной фигуры происходит при повороте этой фигуры на определенный угол вокруг точки, которая обычно называется центром поворота. Отсюда и приведенные выше названия указанного вида симметрии. Поворотная симметрия рассматривалась в примере с пятиконечной звездой. Поворотная симметрия может рассматриваться и в пространстве. Куб при повороте вокруг точки пересечения его диагоналей на угол 90 градусов в плоскости, параллельной любой грани перейдет в себя. Поэтому можно сказать, что куб является фигурой центрально симметричной или обладающей поворотной симметрией.

Еще одним видом симметрии, является переносная симметрия. Этот вид симметрии состоит в том, что части целой формы, организованны таким образом, что каждая следующая повторяет предыдущую и отстоит от нее на определенный интервал в определенном направлении. Этот интервал называют шагом симметрии. Переносная симметрия обычно используется при построении бордюров. В произведениях архитектурного искусства ее можно увидеть в орнаментах или решетках, которые используются для их украшения. Переносная симметрия используется и в интерьерах зданий.

Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаз, их люди считают красивыми. С чем это связано? Здесь можно высказать только предположения.

Во- первых, все мы с вами живем в симметричном мире, который обусловлен условиями жизни на планете Земля, прежде всего существующий здесь гравитацией. И, скорее всего, подсознательно человек понимает, что симметрия это форма устойчивости, а значит существования на нашей планете. Поэтому в рукотворных вещах он интуитивно стремится к симметрии.

Во- вторых, окружающие человека люди, растения, животные, вещи симметричны. Однако при ближайшем рассмотрении оказывается, что природные объекты (в отличие от рукотворных) только почти симметричны. Но это не всегда воспринимает глаз человека. Глаз человека привыкает видеть симметричные объекты. Они воспринимаются как гармоничные и совершенные.

Симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.

Симметричные объекты обладают высокой степенью целесообразности- ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в различных направлениях. Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным.

Симметрия использовалась при сооружении культовых и бытовых сооружений в Древнем Египте. Украшения этих сооружений тоже представляют образцы использования симметрии. Но наиболее ярко симметрия проявляется в античных сооружениях Древней Греции, предметах роскоши и орнаментов, украшавших их. С тех пор и до наших дней симметрия в сознании человека стала объективным признаком красоты.

Соблюдение симметрии является первым правилом архитектора при проектировании любого сооружения. Стоит только посмотреть на великолепное произведение А. Н. Воронихина Казанский собор в Санкт-Петербурге, чтобы убедиться в этом.

Если мы мысленно проведем вертикальную линию через шпиль на куполе и вершину фронтона, то увидит, что с двух сторон от нее абсолютно одинаковые части сооружения (колоннады и здания собора).

Рассмотрим симметрию на примере здания нашего муниципалитета

Кроме симметрии в архитектуре можно рассматривать антисимметрию и диссимметрию.

Антисимметрия это противоположность симметрии, ее отсутствие. Примером антисимметрии в архитектуре является Собор Василия Блаженного в Москве, где симметрия отсутствует полностью в сооружении в целом. Однако, удивительно, что отдельные части этого собора симметричны и это создает его гармонию.

Диссимметрия- это частичное отсутствие симметрии, расстройство симметрии, выраженное в наличии одних симметричных свойств и отсутствии других.

Примером диссимметрии в архитектурном сооружении может служить Екатеринский дворец в Царском селе под Санкт- Петербургом. Практически в нем полностью выдержаны все свойства симметрии за исключением одной детали. Наличие Дворцовой церкви расстраивает симметрию здания в целом. Если же не принимать во внимание эту церковь, то Дворец становится симметричным.

В современной архитектуре все чаще используются приемы как антисимметрии, так и диссимметрии. Это поиски часто приводят к весьма интересным результатам. Появляется новая эстетика градостроительства.

Завершая, можно констатировать, что красота есть единство симметрии и диссимметрии.

Как мы убедились, тесная связь архитектуры и математики известна давно. В одной из колыбелей современной цивилизации –Древней Греции – геометрия считалась одним из разделов архитектуры. Не исчезла связь архитектуры с геометрией в чем мы убедили своей работой. Современный архитектор должен быть знаком с различным соотношениями ритмических рядов, позволяющих сделать объект наиболее гармоничным и выразительным. Кроме того, он должен знать аналитическую геометрию и математический анализ, основы высшей алгебры и теории матриц, владеть методами математического моделирования. При подготовке архитекторов большое внимание уделяется математической подготовке и владению компьютером.

А это мы приобретаем в школе. Эта работа послужила стимулом для дальнейших исследований. Следующая наша работа будет по теме «Золотое сечение в архитектуре», или «Геометрическая форма- гарант прочности архитектурного сооружения».

Помните «Архитектура – это музыка застывшая в камне».

ОТЧЕТ

о лабораторном практикуме

По дисциплине Информационные технологии в строительстве

Отметка о зачете ..

Руководитель практикума

Ю.Н. Белисова.

(должность) (подпись) (инициалы, фамилия)

Архангельск 2014

Лист для замечаний ______________________________________________________________________________________________________________________________________________________________________________________

1 РАЗВИТИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СТРОИТЕЛЬСТВЕ.. 4

2 РАБОТА В ПРОГРАММЕ MICROSOFT EXCEL.. 5

3 ИНФОРМАЦИОННЫЕ СИСТЕМЫ... 5

4 РАСЧЁТНЫЕ ПРОГРАММНЫЕ КОМПЛЕКСЫ В СТРОИТЕЛЬСТВЕ.. 6

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.. 9

РАЗВИТИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СТРОИТЕЛЬСТВЕ

Технология «Умный дом» становится популярной день ото дня по ряду причин, но наряду с преимуществами этой технологии существуют и недостатки (таблица 1.1).

Таблица 1.1 – Преимущества и недостатки технологии «Умного дома»

Информационное загрязнение сети интернет не лучшим образом влияет на развитие информационных технологий в строительстве. Загрязнение в сети интернет имеет следующие проявления:

– информационное пресыщение пользователя. Люди, активно пользующиеся Сетью, потребляют большое количество различного рода информации каждый день;

– искусственное возбуждение потребностей. Эта проблема вызывает множество отрицательных последствий, от ведения человеком самодеструктивного образа жизни до критического уровня массового потребления, что несет в себе другие, более глубокие проблемы, которые коснутся человечества в более долгосрочной перспективе;

– проблема правдивости информации. В сети размещается большое количество заведомо ложной информации. Причины для этого могут быть различны, начиная с простого невежества и неосведомленности по какому-либо вопросу и заканчивая определенной целью, которую преследует пользователь или группа пользователей, размещая такую информацию в Сети.

При таком количестве отрицательных последствий от информационного загрязнения Сеть не предоставляет достаточно качественных инструментов для фильтрации информационных потоков. Вся фильтрация, как правило, сводится к отсеиванию баннерной рекламы и всплывающих окон. Данные проблемы нуждаются в скорейшем решении, так как Сеть, уже прочно вошедшая в жизнь почти каждого современного человека, будет только укреплять свои позиции.

ЦИФРОВАЯ АРХИТЕКТУРА

2.1 Основные положения

Сегодня среди профессионалов-архитекторов все более популярными становятся исследования, направленные на изучение и развитие технологий в архитектуре. Какова роль цифровых технологий в архитектуре? Можно ли говорить о том, что архитектура, созданная с помощью цифровых технологий, автоматически становится цифровой? Границы этих понятий размыты, каждый понимает их по-своему. Поэтому целесообразно дать определение цифровой архитектуры и предложить классификацию ее возможных направлений.

За основу были приняты четыре категории, значимые для определения цифровой архитектуры: Issue (принадлежность архитектора к течению дигитально-виртуальной архитектуры), Concept (идея), Form (форма), Technology (технология), рассмотренные в статье Евгения Хилькевича "Виртуальная архитектура: попытка систематизации". Такой подход позволяет подойти к определению цифровой архитектуры достаточно точно, но для более детального анализа понятия «цифровая архитектура» стоит определить иерархию данных критериев и уточнить их характеристики.

Прежде всего, категория Issue не является значимой для отнесения проекта к определенному течению, так как, во-первых, не каждый автор позиционирует себя как представитель того или иного направления, а во-вторых, на данном этапе развития архитектуры невозможно провести четкие рамки между направлениями. Поэтому для определения оперёмся лишь на категории "идея", "технология", "форма". Так, под идеей понимается ведущий замысел, конструктивный принцип различных видов деятельности, под технологией ‒ технологические методы проектирования, средства реализации и функционирования объекта, под формой – геометрические формы пространства и их пространственные характеристики.

В триаде «идея – технология – форма» можно выявить зависимости категорий, соотношение и характеристики которых определяют архитектурное направление. Так, в зависимости от сформированной идеи, архитектор выбирает технологию ее воплощения. Идея является основополагающей, однако выбор технологии ее осуществления может привести к корректировке концепции. Далее, технология влияет на форму выбранным методом формообразования, а в дальнейшем – и на то, как будет функционировать объект. Технология становится определяющей в понимании цифровой архитектуры. Активное введение технологий не предполагает превращение создания архитектуры в механизированный процесс без участия человека: технология – это посредник между архитектором и реализацией его идеи. Управляет всем процессом архитектор, получая на выходе архитектурное пространство определенного качества.

Основываясь на характеристиках и иерархии данных категорий, представим структуру смысла термина цифровая архитектура графически (рис. 1).

Рисунок 1 – Цифровая архитектура

Разработанная структура позволяет сделать вывод о том, что цифровая архитектура (digital architecture) – это направление в архитектуре, в основе которого лежат цифровые технологии, участвующие как на уровнях проектирования и возведения объекта, так и при его эксплуатации.

Иллюстрацией цифровой архитектуры "полного цикла" (с применением современных технологий на всех этапах проектирования) могут стать работы архитектурного бюро Gramazio & Kohler. Архитектура, основанная на точных компьютерных расчетах сложных сеток, форм и взаимоотношений внутренних пространств, с учетом инсоляции, теплопотерь воплощается с помощью промышленных строительных роботов. Пока эти строения имеют относительно небольшие размеры, как правило, это павильоны, уже воплощенные в Цюрихе, Лондоне, Барселоне, Нью-Йорке и других городах (табл. 1).

Таблица 1

Во многих проектах цифровой архитектуры прослеживается идея виртуальности. Она выражается, прежде всего, в создании интерактивной среды, то есть среды, совмещающей в себе реальную и виртуальную действительность, а также в отходе от традиционной метрики пространства; тем самым создается иная, непривычная, среда. Основная цель – создавать максимально просчитанную архитектуру, наиболее входящую в контакт с человеком и средой.

2.2 Технологии

Цифровые технологии включаются во все стадии проектирования: от предпроектной до стадии реализации проекта. На предпроектной стадии компьютерное моделирование используется для анализа, для изучения сложных систем (компьютерный эксперимент прогнозирования или имитации процессов). На стадии проекта используются компьютерные программы для моделирования формы, производящие оценку и расчет нагрузок, инсоляции, теплопотерь, а также программы для оптимизации структур (минимизирование стресса, сведение к минимуму деформации, обеспечение максимальной стабильности и т.д.). Кроме того, связное компьютерное обеспечение позволяет синхронизировать процесс создания рабочей документации. На стадии реализации используются 3D-принтеры, лазерные фрезеры и другие способы высокоточного изготовления сложных конструкций. Технология используется и в функционировании здания (сенсорные и фотодатчики, "интеллектуальные" системы и т.д.).

2.3 Формы представления

Обращение архитекторов к неевклидовой геометрии, топологической геометрии, отказ от привычной метрики пространства привели к появлению новых сложных архитектурных форм, которые стали возможны благодаря новым технологиям, основанным на сложных вычислительных системах. Однако несмотря на тенденцию проектировать криволинейные пространства и формы, криволинейность – не основополагающая характеристика цифровой архитектуры. Форма может быть и классически прямоугольной, главное – это метод, каким она была создана, как возведена и функционирует.

Форма, полученная методом компьютерного моделирования, может быть классифицирована двумя способами: на основе геометрических свойств (топологическая, изоморфная, фрактальная, прямоугольная формы) либо на основе характеристики системы как динамической или статической: статичная, динамичная, виртуально-динамичная форма.

В рамках направления цифровой архитектуры можно выделить ряд течений. Самые яркие из них: параметрическая архитектура, отзывчивая архитектура и медиа-архитектура. Каждое из направлений имеет свою специфику, философию и подходы к проектированию, однако в основе их лежат цифровые технологии, и можно говорить о том, что они относятся к одному явлению (табл. 2).

Таблица 2

ГЕОМЕТРИЧЕСКИЕ ФОРМЫ В СОВРЕМЕННОЙ АРХИТЕКТУРЕ

Сейчас именно современная архитектура формирует облик города. Человек задумывается о красоте своего города, идя по улице, он смотрит не под ноги, а по сторонам. Но как же не приятно видеть простые прямоугольники домов, ведь в природе есть много других затейливых форм: треугольники, трапеции, параллелограммы, спирали…

В данный момент архитектура развивается, появляется много талантливых архитекторов, они создают новые здания, используя все разнообразие геометрических форм.

Современные архитекторы: Норман Фостер, Седрик Прайс, Ричард Роджерс, Николас Гримшоу – связывают образ научной фантастики с возможностями новых технологий. Поэтому стиль, который они создали, стал называться «хай-тек». Другая традиция современной архитектуры – это так называемая экологическая архитектура.

Архитектуру называют застывшей музыкой. Да, она несет в себе гармонию форм, которая отражает не только духовную жизнь поколений, но и вечные тайны человеческой души. Гармонию, которая доставляет нам эстетическое наслаждение и продолжает волновать.

Архитектура парадоксально соединяет в себе результат строительной деятельности, геометрические формы и вершину художественного творчества. С одной стороны, геометрия, сложные технологии, с другой - искусство. Инженерный расчет, научное знание и - вдохновение художника.

3.1 Норман Фостер

Знаменитый британский архитектор, лауреат Императорской и Прицкеровской премий. Произведён королевой сначала в рыцари, а потом и в бароны.

Родился 1 июня 1935 в Манчестере, в семье рабочего. В 1953–1955 служил летчиком в Королевских военно-воздушных силах. Затем поступил на архитектурное отделение Манчестерского университета; сменив несколько вузов, в итоге получил диплом архитектурной школы Йельского университета в США (1962), где получил ученую степень магистра и встретил Ричарда Роджерса, вместе с которым создал «Бюро четверых». Из недр этого учреждения вышел весьма широко распространившийся стиль «хай-тек».

Вернувшись в Англию, был партнером в фирме «Команда 4», а в 1967 основал свою собственную фирму «Foster Assosiates».

Рисунок 2 - Норман Фостер. Центральный офис корпорации «Херст» в Нью-Йорке

Здание состоит из стеклянных блоков, которые представляют собой правильные треугольники. А правильные треугольники составляют правильные шестиугольники.

Рисунок 3 - Норман Фостер. Центральный офис «Свисс Ре» в Лондоне, известен также как «Огурец»

Состоит из ромбовидных стеклянных панелей разных оттенков, в свою очередь которые состоят из меньших по площади ромбов. Все ромбы образуют спирали.

Рисунок 4 - Норман Фостер. Центральная башня в Токио

Центральная башня в Токио. Двадцатиэтажное здание, хорошо вписывающееся в архитектурную среду города, но при этом имеющее собственный характер.

В структуре дома хорошо просматриваются, некоторые геометрические фигуры: трапеции, треугольники и прямоугольники.

Это здание состоит из двух башен. Из-за того что здание построено из стекла, минимального количества бетона и железных перекрытий, в самое сердце попадает свет. Таким образом, создается контраст глухой поверхности стен и мягких лучей света, что очень любят японцы.

Рисунок 5 - Норман Фостер. Банк в Гонконге

В этом здании присутствует симметрия и равнобедренные треугольники.

Рисунок 6 - Норман Фостер. Центр Микроэлектроники

Здание имеет цилиндрическую форму. Так же здание симметрично.

3.2 Заха Хадид

Заха Хадид родилась в Багдаде в 1950 году. В 11 лет, во время поездки в Англию, она решила, что хочет стать архитектором. В 1972 году, после окончания Американского Университета в Бейруте, Хадид приехала в Лондон и поступила в архитектурную школу Архитектурной Ассоциации.

Сильное влияние на нее как архитектора оказали советские конструктивисты, но ее творческий язык остается ярко оригинальным.

Одним из первых ее реализованных зданий стала пожарная часть компании-производителя дизайнерской мебели Vitra.

2006 – отель "Пуэрта Америка", Мадрид, Испания

2005 - Центральное здание завода BMW, Лейпциг, Германия

2005 - Научный центр "Фэно", Вольфсбург, Германия

2005 - Станции канатной дороги, Инсбрук, Австрия

2005 - Музей искусств Ордрупгаард: новое крыло, Копенгаген, Дания

2002 - Трамплин Bergisel, Инсбрук, Австрия

2001 - Вокзал Hoenheim-North и автостоянка, Страсбург, Франция

1998 - Центр современного искусства Розенталя в Цинциннати, Огайо, США

1994 - Пожарная часть компании-производителя дизайнерской мебели "Витра", Weil am Rhein, Германия

Рисунок 7 - Заха Хадид. Пожарная часть.

Это здание состоит из прямоугольных трапеций.

Рисунок 8 - Заха Хадид. Проект музея в Перми

Проект представляет собой овальное здание, со стеклом на крыше, сделанное в виде эллипса.

3.3 Фриденсрайх Хундертвассер

Австрийский художник Фриденсрайх Хундертвассер (1928-2000). Он стал самым известным мастером изобразительного искусства в Австрии, соединив стилистику модерна, растительный орнамент с принципами абстрактного искусства. В последние годы он увлекался также "экологической архитектурой", придавая природным формам своей живописи и графики монументальность реальных построек.

Его Идеальный Дом - это безопасная уютная нора, которую сверху покрывает трава, но нора со множеством окон-глаз. В Новой Зеландии он построил такой дом, где крыша переходит по бокам в холм. На ней растёт трава, которую иногда приходят пощипать бараны.

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 27» г. Перми

Мир геометрии в архитектуре города

Ведерникова Екатерина, 16 лет,

ученица 10А класса

МБОУ «СОШ №27»

город Пермь, Россия

Руководитель:

Кустова Татьяна Семеновна,

учитель математики

МБОУ «СОШ №27»

Пермь, 2013

Введение...…….….…………………………………………………………..стр3

Теоретическая часть...……………………………………………………….стр4

Практическая часть…..……………………………………………………...стр7

Заключение…………………………………………………………………стр10

Список литературы……...…………………………………………………стр11

Введение

    углубить знания по геометрии, в частности, по стереометрии, так как в архитектуре как раньше, так и сейчас используются различные геометрические фигуры и тела,

    выявить зависимость архитектуры и геометрии друг от друга,

    рассмотреть на примерах разнообразие построек нашего города, представить фотоотчет по проделанной работе с интересными архитектурными решениями.

Реализация проекта:

В ходе поисковой деятельности найти в нашем городе здания, которые имеют необычное архитектурное построение, с использованием геометрических тел и фигур в своем составе. Представить фотографии и описания зданий (с указанием геометрических фигур и тел) входящих в состав.

Теоретическая часть

«Прошли века, но роль геометрии
не изменилась. Она по-прежнему
остается грамматикой архитектора»
Ле Корбюзье

Геометрия-это наука о свойствах геометрических фигур

Архитектура-это вид искусства, представляющий собой систему, зданий и сооружений, формирующих пространственную среду для жизни человека.

Кое-кто, возможно, считает, что различные замысловатые линии, фигуры, поверхности можно встретить только в книгах или учебниках. Однако, стоит посмотреть вокруг, и мы увидим, что многие здания и постройки имеют форму, известных нам геометрических фигур.

Зарождение архитектуры относится ко времени первобытнообщинного строя, когда возникли первые искусственно сооружаемые жилища и поселения. С возникновением государств сложилась и новая форма поселения - город как центр управления, ремесленного производства и торговли.В древние века возникают большие государства Египет, Греция, Япония, Римская империя, Китай где создается своеобразная архитектура. Уже в то время возникло абстрактное понятие геометрического тела (фигуры) и отмечается связь геометрии и реального мира. Геометрия, как практическая наука, использовалась египтянами для восстановления земельных участков после каждого разлива Нила, при различных хозяйственных работах, при сооружении оросительных каналов, грандиозных храмов и пирамид, при высечении из гранита знаменитых сфинксов. Широта градостроительства, отличает Римскую архитектуру. Организованную строгую планировку, римляне усовершенствовали и воплотили в городах большого масштаба. Переход от простейших построек к сложным архитектурным сооружениям осуществлялся медленно, по мере развития измерительных приборов, материалов, механизмов, необходимых для строительства. Одна из самых «прочных», «устойчивых» и «уверенных» геометрических фигур - это хорошо известный квадрат, иными словами, абсолютно правильный прямоугольник. Форму прямоугольника имеет кирпич, доска, плита, стекло - то есть все, что нам нужно для постройки здания имеет прямоугольную форму. Прямой угол - величайший организатор пространства, особенно рукотворного. Архитектурные сооружения состоят из отдельных деталей, каждая из которых строится на базе определенных геометрических фигур либо на их комбинации. Кроме того, форма любого архитектурного сооружения имеет своей моделью определенную геометрическую фигуру.

Конечно, говорить о соответствии архитектурных форм геометрическим фигурам можно только приближенно, отвлекаясь от мелких деталей. В архитектуре используются почти все геометрические фигуры. Выбор использования той или иной фигуры в архитектурном сооружении зависит от множества факторов: эстетичного внешнего вида здания, его прочности, удобства в эксплуатации. Эстетические особенности архитектурных сооружений изменялись в ходе исторического процесса и воплощались в архитектурных стилях. Стилем принято называть совокупность основных черт и признаков архитектуры определенного времени и места. Геометрические формы, свойственные архитектурным сооружениям в целом и их отдельным элементам, также являются признаками архитектурных стилей.

Современная архитектура

Архитектура в наши дни имеет все более необычный характер. Здания становятся самых разных форм. Многие здания украшаются колоннами и лепнинами. Геометрические фигуры различной формы можно увидеть в постройке конструкциях мостов. Самые «молодые» здания- это небоскребы, подземные сооружения с модернизированным дизайном. Такие здания проектируются с использованием архитектурных пропорций.

Практическая часть

В нашем городе множество интереснейших построек. Я бы хотела представить здесь фотографии, и рассмотреть из каких геометрических тел и фигур состоят Пермские достопримечательности. А тем самым доказать, что геометрия нашего города очень разнообразна и интересна.

В основном здание построении в виде прямоугольного параллелепипеда, главной особенностью считаю входящую в состав здания полусферу, которая украшает второй корпус гипермаркета «Семья».

Фасад трк «Столица» выполнен в форме дуги.

С данного угла обзора мы можем увидеть что стена над входом так же в форме дуги, получается «1\4 цилиндра»

фасад дома, жилого комплекса «Виктория» имеет интересную форму, угол дома не прямой, сечение в форме ромба.

Заключение

В ходе своей работы я рассмотрела зависимость архитектуры от геометрии, на практике в этом убедилась и представила фото и чертежи отдельных геометрических тел. Целью моей работы было изучение геометрии вне школьной программы. Я попыталась раскрыть применение геометрия в практической деятельности человека, в построении известных зданий.

Интернет-ресурсы:

1. /library/material/140875/

2. /slide/40354/

3. /view.aspx?id=555977

4. /mathematics/00077208_0.html

Источники иллюстраций.

    Внеурочное мероприятие по математике

    «Геометрия в архитектуре» («Мастер- класс»)

    учитель математики,

    МКОУ СОШ №24 г. Россошь

    Россошанский муниципальный район

      Введение.

    Идея нашего исследования появилась на уроках геометрии. Проект представляет собой презентацию, предназначенную для использования как на уроках математики в 10 – 11 классах так и «Мастер- классы» по внеурочной деятельности и в дополнительном образовании. В проекте раскрывается роль математики в архитектурном деле. При рассмотрении и выполнении моделей объемных геометрических тел мы заметили, что многие из этих тел, такие как конус, параллелепипед, цилиндр и пирамида мы встречали на улицах нашего города в конструкциях некоторых зданий. Нам захотелось изучить, как геометрия связана с архитектурой.

    Актуальность нашего исследования в том, что архитектурные объекты являются неотъемлемой частью нашей жизни. Наше настроение, мироощущение зависят от того, какие здания нас окружают. Назрела необходимость исследования того многообразия объектов, которые появились в нашем мире. Если раньше архитектурные конструкции представляли собой однообразные сооружения, то в настоящее время геометрические формы позволили разнообразить архитектурный облик городов.

    Цель нашей работы – исследование взаимосвязи геометрии и архитектуры.

    Гипотеза: все здания, которые нас окружают – это геометрические фигуры.

    Объект исследования: архитектура зданий и пирамид.

    Предмет исследования: взаимосвязь архитектуры и геометрии.

    Задачи нашего исследования:

      Изучить литературу о взаимосвязи геометрии и архитектуры.

      Рассмотреть геометрические формы в архитектурных стилях, и как гарант прочности конструкций.

      Рассмотреть наиболее интересные архитектурные сооружения, и выяснить, какие геометрические формы в них встречаются.

    Методы исследования: наблюдение, фотографии, изучение и анализ теоретических сведений по данному вопросу.

    Материал оформлен в виде сообщений, собранный учащимися 10 класса.

      Геометрические формы в разных архитектурных стилях.

    Архитектурные произведения живут в пространстве, являются его частью, вписываясь в определенные геометрические формы. Кроме того, они состоят из отдельных деталей, каждая из которых также строится на базе определенного геометрического тела.

    Часто геометрические формы являются комбинациями различных геометрических тел.

    Посмотрите на фотографию, на которой изображено здание клуба имени И.В.Русакова в Москве (см. приложение рис.1). это здание построено в 1929 г. по проекту архитектора К.Мельникова. базовая часть здания представляет собой невыпуклую прямую призму. При этом гигантские нависающие объемы также являются призмами, только выпуклыми.

    Некоторые архитектурные сооружения имеют довольно простую форму. Например, на фотографии (см. приложение рис.2), вы видите башню с часами, которая является обязательным атрибутом любого американского университета. Отвлекаясь от некоторых деталей, мы можем сказать, что она имеет форму прямой четырехугольной призмы, которую еще называют прямоугольным параллелепипедом.

    Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника (см. приложение рис.3).

    Часто в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в Спасской башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к многогранной призме, завершается же она пирамидой (см. приложение рис.4). При детальном рассмотрении и изучении деталей мы сможем увидеть: круги – циферблаты курантов; шар – основание для крепления рубиновой звезды; полукруги – арки одного из рядов бойниц на фасаде башни и т.д.

    Нужно сказать, что у архитекторов есть излюбленные детали, которые являются основными составляющими многих сооружений. Они имеют обычно определенную геометрическую форму. Например, колонны это цилиндры; купола – полусфера или просто часть сферы, ограниченная плоскостью; шпили – либо пирамиды, либо конусы (см. приложение рис.5).

    У архитекторов различных эпох были и свои излюбленные детали, которые отражали определенные комбинации геометрических форм. Например, зодчие Древней Руси часто использовали для куполов церквей и колоколен так называемые шатровые покрытия. Это покрытия в виде четырехгранной или многогранной пирамиды. Другой излюбленной формой древнерусского стиля являются купола в форме луковки. Луковка представляет собой часть сферы, плавно переходящую и завершающуюся конусом. На рисунке 6 (см. приложение) вы видите церковь Ильи Пророка в Ярославле. Она была построена в Ярославле в середине XVII века. При ее создании зодчие использовали как шатровые покрытия, так и купола в виде луковок.

    Рассмотрим еще один яркий архитектурный стиль – средневековая готика (см. приложение рис.7). готические сооружения были устремлены ввысь, поражали величественностью, главным образом за счет высоты. И в их формах также широко использовались пирамиды и конусы.

    Наконец, обратимся к геометрическим формам в современной архитектуре. В архитектурном стиле «Хай Тек», вся конструкция открыта для обозрения. Здесь мы можем видеть геометрию линий, которые идут параллельно или пересекаются, образуя ажурное пространство сооружения. Примером, своеобразной прародительницей этого стиля может служить Эйфелева башня (см. приложение рис.8).

    Современный архитектурный стиль, благодаря возможностям современных материалов, использует причудливые формы, которые воспринимаются нами через их сложные, изогнутые (выпуклые и вогнутые) поверхности. Их математическое описание сложно, поэтому здесь мы его не представляем.

      Геометрическая форма как гарант прочности сооружений.

    Прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой. Математик бы сказал, что здесь очень важна геометрическая форма (тело), в которое вписывается сооружение. Оказывается, что геометрическая форма также определяет прочность архитектурного сооружения. Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид. Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания.

    На смену пирамидам пришла стоечно – балочная система. Которая представляет собой один прямоугольный параллелепипед, опирающийся на два прямоугольных параллелепипеда. С появлением арочно – сводчатой конструкции в архитектуру прямых линий и плоскостей, вошли окружности, круги, сферы и круговые цилиндры. Первоначально в архитектуре использовались полусферические купола. Это означает, что граница арки представляла собой полуокружность, а купол – половину сферы. Например, именно полусферический купол имеет Пантеон – храм всех богов – в Риме (см.приложение рис.9 и рис.10).

    Арочная конструкция послужила прототипом каркасной конструкции, которая сегодня используется в качестве основной при возведении современных сооружений из металла, стекла и бетона. Телебашня на Шаболовке (см. приложение рис.11) состоит из нескольких поставленных друг на друга частей гиперболоидов. Причем каждая часть сделана из двух прямолинейных балок. Эта башня построена по проекту замечательного инженера В.Г.Шухова.

      Симметрия – царица архитектурного совершенства.

    Вам хорошо знакомо слово симметрия. Наверное, когда вы его произносите, то вспоминаете бабочку или кленовый лист, в которых мысленно можно провести прямую ось и части, которые будут расположены по разные стороны от этой прямой и будут практически одинаковыми. Это представление – правильное. Но это только один из видов симметрии, которую изучает математика, так называемая осевая симметрия. Кроме того, существует более общее понятие симметрии.

    Рассматривая симметрию в архитектуре, нас будет интересовать геометрическая симметрия – симметрия формы, как соразмерность частей целого. замечено, что при выполнении определенных преобразований над геометрическими фигурами, их части, переместившись в новое положение, вновь будут образовывать первоначальную фигуру.

    Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаз, их люди считают красивыми. Соблюдение симметрии является первым правилом архитектора при проектировании любого сооружения.

    Стоит только посмотреть на великолепное произведение А.Н.Воронихина Казанский собор в Санкт – Петербурге (см. приложение рис.12), чтобы убедиться в этом. Если мы мысленно проведем вертикальную линию через шпиль на куполе и вершину фронтона, то увидим, что с двух сторон от нее абсолютно одинаковые части сооружения колоннады и здания собора.

    Кроме симметрии в архитектуре можно рассматривать антисимметрию и диссимметрию. Антисимметрия – это противоположность симметрии, ее отсутствие. Примером антисимметрии в архитектуре является Собор Василия Блаженного в Москве (см. приложение рис.13), где симметрия отсутствует полностью в сооружении в целом.

    Диссимметрия – это частичное отсутствие симметрии, расстройство симметрии, выраженное в наличии одних симметричных свойств и отсутствии других. Примером диссимметрии в архитектурном сооружении может служить Екатериновский дворец в Царском селе под Санкт – Петербургом.

    В современной архитектуре все чаще используются приемы как антисимметрии, так и диссимметрии. Эти поиски часто приводят к весьма интересным результатам. Появляется новая эстетика градостроительства.

      Вывод.

      Принципы симметрии являются основополагающими для любого архитектора, но вопрос о соотношении между симметрией и асимметрией каждый архитектор решает по-разному. Асимметричное в целом сооружение может являть собой гармоническую композицию симметричных элементов.

      Удачное решение определяется талантом зодчего, его художественным вкусом и его пониманием прекрасного. Прогуляйтесь по нашему городу и убедитесь, что удачных решений может быть очень много, но неизменным остается одно – стремление архитектора к гармонии, а это в той или иной степени связано с симметрией.

      Заключение.

    Итак, мы окунулись в мир архитектуры, изучили некоторые ее формы, конструкции, композиции. Рассмотрев множество ее объектов, мы убедились в том, что геометрия играет важную, если не главную роль в архитектуре.


Close