Математические модели различают в основном по характеру отображаемых свойств системы, степени их детализации, способам получения и формального представления.

Структурные и функциональные модели. Если ММ отображает элементы и их связи в системе, то ее называют структурной математической моделью . Если же ММ отражает происходящие в системе какие-либо процессы, то ее относят к функциональным математическим моделям . Ясно, что могут существовать и смешанные ММ, которые описывают как функциональные, так и структурные свойства системы. Структурные ММ делят на топологические и геометрические, составляющие два уровня иерархии ММ этого типа. Первые отображают состав системы и связи между его элементами. Топологические ММ целесообразно применять на начальной стадии исследования сложной системы. Такая ММ имеет форму графов, таблиц, матриц, списков и т.п., и ее построению обычно предшествует разработка структурной схемы системы.

Геометрическая ММ дополнительно к информации, представленной в топологической ММ, содержит сведения о форме и размерах системы и ее элементов, об их взаимном расположении. В геометрическую ММ обычно входят совокупность уравнений линий и поверхностей и алгебраические соотношения, опре­деляющие принадлежность областей пространства системе или ее элементам. Геометрические ММ находят применение при проектирова­нии элементов технических систем, разработке технической документации и технологических процессов изготовления изделий.

Функциональные ММ состоят из соотношений, связываю­щих между собой фазовые переменные, т.е. внутренние, внеш­ниеи выходные параметры системы. Функционирование сложных систем нередко удается описать лишь при помощи совокупности ее реакций на некоторые известные (или заданные) входные воздействия. Такую разновидность функциональной ММ относят к типу черного ящика и обычно называют ими­тационной математической моделью,имея в виду, что она лишь имитирует внешние проявления функционирования, не раскрывая и не описывая существа протекающих в системе процессов. Имитационные ММ находят широкое применение в исследовании сложных систем.

По форме представления имитационная ММ является примером алгоритмической ММ , поскольку связь в ней между входными и выходными параметрами системы удается описать лишь в форме алгоритма, пригодного для реализации в виде программы. К типу алгоритмических ММ относят широкий класс как функциональных, так и структурных ММ. Если связи междупараметрами системы можно выразить в аналитической форме, то говорят об аналитических математических моделях. При созданиииерархии ММ одной и той же системы обычно стремятся к тому, чтобы упрощенный вариант ММ был представлен в аналитической форме, допускающей точное решение, которое можно было бы использовать для сравнения при тестировании результатов, полученных при помощи более полных и поэтому более сложных вариантов ММ.

Ясно, что ММ конкретной системы по форме представления может включать признаки как аналитической, так и алгоритмической ММ. Более того, в процессе моделирования аналитическую ММ преобразуют в алгоритмическую.

По способу получения математические модели могут быть теоретическими илиэмпирическими . Первые получают в результате изучения свойств системы, протекающих в ней процессов на основе использования известных фундаментальных законов со­хранения, а также уравнений равновесия, а вторые являются итогом обработки результатов внешних наблюдений за проявлением этих свойств и процессов. Один из способов построения эмпирических ММ заключает­ся в проведении экспериментальных исследований, связанных с измерением фазовых переменных системы, и в последующем обоб­щении результатов этих измерений в алгоритмической форме или в виде аналитических зависимостей. Поэтому по форме представления эмпириче­ская ММ может содержать признаки как алгоритмической,так и аналитической ММ. Таким образом, построение эмпирической ММ сводится к решению задачи идентификации .

Особенности функциональных моделей. Одной из характерных особенностей функциональной ММ является наличие или отсутствие среди ее параметров случайных величин. При наличии таких величин ММ называют стохастической (или вероятностной), а при их отсутствии - детерминированной .

Далеко не все параметры реальных систем можно характеризовать вполне определенными значениями. Поэтому ММ таких систем, строго говоря, следует отнести к стохастическим, поскольку выходные параметрысистемыбудут случайными величинами. Случайными могут быть и значения внешних параметров.

Для анализа стохастических ММ необходимо использовать выводы теории вероятностей, случайных процессов и математической статистики. Однако основная трудность в их примене­нии обычно связана с тем, что вероятностные характеристики случайных величин (математические ожидания, дисперсии, законы распределения) часто не известны или известны с не высокой точностью, т.е. ММ не удовлетворяет требованию продуктивности. В таких случаях эффективнее использовать ММ, более грубую по сравнению со стохастической, но и более устойчивую по отношению к недостоверности исходных данных.

Существенным признаком классификации ММ является их возможность описывать изменение параметров системы во времени. Если при этом в ММ отражено влияние инерци­онных свойств системы, то ее обычно называют динамической . В противоположность этому ММ, которая не учитывает изме­нение во времени параметров системы, называют статической.

Стационарные ММописывают системы, в которых протекают так называемые установившиеся процессы, т.е. процессы, в которых инте­ресующие нас выходные параметры постоянны во времени. К установившимся относят и периодические процессы, в кото­рых некоторые выходные параметры остаются неизменными, а остальные претерпевают колебания.

Если выходные параметры системы изменяются медленно и в рассматриваемый фиксированный момент времени этими изменениями можно пренебречь, то считают ММ нестационарной .

Важным с точки зрения последующего анализа свойством ММявляется ее линейность, в смысле связи параметров системы линейными соотношениями. Это означает, что при изменении какого-либо внешнего (или внутреннего) параметра системы линейная ММ предсказывает линейное изменение зависящего от него выходного параметра, а при изменении двух или более параметров - сложение их влияний, т.е. такая ММ обладает свойством суперпозиции . Если ММ не обладает свойством суперпозиции, то ее называют нелинейной.

Для количественного анализа линейных ММ разработано большое число математических методов, тогда как возможности анализа нелинейных ММ связаны в основном с методами вычислительной математики. Чтобы для исследования нели­нейной ММ системы можно было использовать аналитические методы, ее обычно линеаризуют, т.е. нелинейные соотношения между параметрами заменяют приближенными линейными и получают так называемую линеаризованную ММсистемы. Так как линеаризация связана с внесением дополнительных погрешностей, то к результатам анализа линеаризованной модели следует относиться с определенной осторожностью. Дело в том, что линеаризация ММ может привести к утрате адекватности ее. Учет в ММ нелинейных эффектов особенно важен, например, при описании смены форм движения или положений равновесия, когда малые изменения входных параметров могут вызвать качественные изменения в состоянии системы.

Каждый параметр системы может быть двух типов - непрерывно изменяющимся в некотором промежутке своих значений или принимающим только некоторые дискретные значения. Возможна и промежуточная ситуация, когда в одной области параметр принимает все возможные значения, а в другой - только дискретные. В связи с этим выделяют непрерывные дискретные и смешанные математические модели. Впроцессе анализа ММ этих типов могут быть преобразованы одна в другую, но при таком преобразовании следует контролировать выполнение требования адекватности ММрассматриваемой системе.

Формы представления математических моделей. При математическом моделировании сложной системы описать ее поведение одной ММ, как правило, не удается, а если такая ММ и была бы построена, то она оказалась бы слишком сложной для количественного анализа. Поэтому к таким системам обычно применяют принцип декомпозиции . Он состоит в условном разбиении системы на подсистемы, допускающие их независимое исследование с последующим учетом их взаимного влияния друг на друга. В свою очередь, принцип декомпозиции можно применить и к каждой выделенной подсистеме вплоть до уровня достаточно простых элементов. В таком случае возникает иерархия ММсвязанных между собой подсистем. Иерархические уровни выделяют и для отдельных типов ММ. Например, среди структурныхММ системк более высокому уровню иерархии относят топологическиеММ, а к более низкому уровню, характеризующемуся большей детализацией, - геометрическиеММ. Среди функциональныхММиерархические уровни отражают степень детализации описания процессов, протекающих в системе и ее элементах. С этой точки зрения обычно выделяют три основных уровня: микро - макро - и мета-уровень.

Математические модели микроуровня описывают процессы в системах с распределенными параметрами, а математические модели макроуровня - в системах с сосредоточенными параметрами. В первых из них фазовые переменные могут зависеть как от времени, так и от пространственных координат, а во вторых - только от времени.

Если в ММ макроуровня число фазовых переменных имеет порядок 10 4 -10 5 , то количественный анализ такой ММ ста­новится громоздким и требует значительных затрат вычислительных ресурсов. Кроме того, при столь большом числе фазовых переменных трудно выделить существенные характеристики системы и особенности ее поведения. В таком случае путем объединения и укрупнения элементов сложной системы стремятся уменьшить число фазовых переменных за счет исключения из рассмотрения внутренних параметровэлементов, ограничиваясь, лишь описанием взаимных связей между укрупненными элементами. Такой подход характерен для ММ метауровня .

Наиболее распространенной формой представления динами­ческой (эволюционной ) ММ микроуровня является формулировка краевой задачи для дифференциальных уравнений математической физики. Такая формулировка включает дифференциальные уравнения с частными производ­ными и краевые условия. В свою очередь краевые условия со­держат начальные и граничные условия. К начальным условиям относят распределения искомых фазовых переменных в некоторый момент времени. Границы же пространственной области, конфигурация которой соответствует рассматриваемому элементу или системе в целом являются граничными условиями. При представле­нии ММ целесообразно использовать безразмерные переменные и коэффициенты уравнений.

ММ микроуровня называют одномерной, двумернойили трехмерной, если искомые фазовые переменные зависят от одной, двух или трех пространственных координат соответственно. Два последних типа ММ объединяют в многомерные математические модели микроуровня.

Представь себе самолет: крылья, фюзеляж, хвостовое оперение, все это вместе - настоящий огромный, необъятный, целый самолет. А можно сделать модель самолета, маленькую, но все как взаправду, те же крылья и т.д., но компактный. Так же и математическая модель. Есть текстовая задача, громоздкая, на нее можно так посмотреть, прочесть, но не совсем понять, и уж тем более не ясно как решать ее. А что если сделать из большой словесной задачи ее маленькую модель, математическую модель? Что значит математическую? Значит, используя правила и законы математической записи, переделать текст в логически верное представление при помощи цифр и арифметических знаков. Итак, математическая модель - это представление реальной ситуации с помощью математического языка.

Начнем с простого: Число больше числа на. Нам нужно записать это, не используя слов, а только язык математики. Если больше на, то получается, что если мы из вычтем, то останется та самая разность этих чисел равная. Т.е. или. Суть понял?

Теперь посложнее, сейчас будет текст, который ты должен попробовать представить в виде математической модели, пока не читай, как это сделаю я, попробуй сам! Есть четыре числа: , и. Произведение и больше произведения и в два раза.

Что получилось?

В виде математической модели выглядеть это будет так:

Т.е. произведение относится к как два к одному, но это можно еще упросить:

Ну ладно, на простых примерах ты понял суть, я так полагаю. Переходим к полноценным задачам, в которых эти математические модели еще и решать нужно! Вот задача.

Математическая модель на практике

Задача 1

После дождя уровень воды в колодце может повыситься. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле, где — расстояние в метрах, — время падения в секундах. До дождя время падения камешков составляло с. На сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с? Ответ выразите в метрах.

О, ужас! Какие формулы, что за колодец, что происходит, что делать? Я прочел твои мысли? Расслабься, в задачах этого типа условия бывают и пострашнее, главное помнить, что тебя в этой задаче интересуют формулы и отношения между переменными, а что все это обозначает в большинстве случаев не очень важно. Что ты тут видишь полезного? Я лично вижу. Принцип решения этих задач следующий: берешь все известные величины и подставляешь. НО, задумываться иногда надо!

Последовав моему первому совету, и,подставив все известные в уравнение, получим:

Это я подставил время секунды, и нашел высоту, которую пролетал камень до дождя. А теперь надо посчитать после дождя и найти разницу!

Теперь прислушайся ко второму совету и задумайся, в вопросе уточняется, «на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с». Сразу надо прикинуть, тааак, после дождя уровень воды повышается, значит, время падения камня до уровня воды меньше и тут витиеватая фраза «чтобы измеряемое время изменилось» приобретает конкретный смысл: время падения не увеличивается, а сокращается на указанные секунды. Это означает, что в случае броска после дождя, нам просто нужно из начального времени c вычесть с, и получим уравнение высоты, которую камень пролетит после дождя:

Ну и наконец, чтобы найти, на сколько должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на с., нужно просто вычесть из первой высоты падения вторую!

Получим ответ: на метра.

Как видишь, ничего сложного нет, главное, особо не заморачивайся, откуда такое непонятное и порой сложное уравнение в условиях взялось и что все в нем означает, поверь на слово, большинство этих уравнений взяты из физики, а там дебри похлеще, чем в алгебре. Мне иногда кажется, что эти задачи придуманы, чтоб запугать ученика на ЕГЭ обилием сложных формул и терминов, а в большинстве случаев не требуют почти никаких знаний. Просто внимательно читай условие и подставляй известные величины в формулу!

Вот еще задача, уже не по физике, а из мира экономической теории, хотя знаний наук кроме математики тут опять не требуется.

Задача 2

Зависимость объёма спроса (единиц в месяц) на продукцию предприятия-монополиста от цены (тыс. руб.) задаётся формулой

Выручка предприятия за месяц (в тыс. руб.) вычисляется по формуле. Определите наибольшую цену, при которой месячная выручка составит не менее тыс. руб. Ответ приведите в тыс. руб.

Угадай, что сейчас сделаю? Ага, начну подставлять то, что нам известно, но, опять же, немного подумать все же придется. Пойдем с конца, нам нужно найти при котором. Так, есть, равно какому-то, находим, чему еще равно это, а равно оно, так и запишем. Как ты видишь, я особо не заморачиваюсь о смысле всех этих величин, просто смотрю из условий, что чему равно, так тебе поступать и нужно. Вернемся к задаче, у тебя уже есть, но как ты помнишь из одного уравнения с двумя переменными ни одну из них не найти, что же делать? Ага, у нас еще в условии осталась неиспользованная частичка. Вот, уже два уравнения и две переменных, значит, теперь обе переменные можно найти - отлично!

Такую систему решить сможешь?

Решаем подстановкой, у нас уже выражена, значит, подставим ее в первое уравнение и упростим.

Получается вот такое квадратное уравнение: , решаем, корни вот такие, . В задании требуется найти наибольшую цену, при которой будут соблюдаться все те условия, которые мы учли, когда систему составляли. О, оказывается это было ценой. Прикольно, значит, мы нашли цены: и. Наибольшую цену, говорите? Окей, наибольшая из них, очевидно, ее в ответ и пишем. Ну как, сложно? Думаю, нет, и вникать не надо особо!

А вот тебе и устрашающая физика, а точнее еще одна задачка:

Задача 3

Для определения эффективной температуры звёзд используют закон Стефана-Больцмана, согласно которому, где — мощность излучения звезды, — постоянная, — площадь поверхности звезды, а — температура. Известно, что площадь поверхности некоторой звезды равна, а мощность её излучения равна Вт. Найдите температуру этой звезды в градусах Кельвина.

Откуда и понятно? Да, в условии написано, что чему равно. Раньше я рекомендовал все неизвестные сразу подставлять, но здесь лучше сначала выразить неизвестное искомое. Смотри как все просто: есть формула и в ней известны, и (это греческая буква «сигма». Вообще, физики любят греческие буквы, привыкай). А неизвестна температура. Давай выразим ее в виде формулы. Как это делать, надеюсь, знаешь? Такие задания на ГИА в 9 классе обычно дают:

Теперь осталось подставить числа вместо букв в правой части и упростить:

Вот и ответ: градусов Кельвина! А какая страшная была задача, а!

Продолжаем мучить задачки по физике.

Задача 4

Высота над землей подброшенного вверх мяча меняется по закону, где — высота в метрах, — время в секундах, прошедшее с момента броска. Сколько секунд мяч будет находиться на высоте не менее трех метров?

То были всё уравнения, а вот здесь надо определить, сколько мяч находился на высоте не менее трех метров, это значит на высоте. Что мы составлять будем? Неравенство, именно! У нас есть функция, которая описывает как летит мяч, где - это как раз та самая высота в метрах, нам нужна высота. Значит

А теперь просто решаешь неравенство, главное, не забудь поменять знак неравенства с больше либо равно на меньше, либо равно, когда будешь умножать на обе части неравенства, чтоб перед от минуса избавиться.

Вот такие корни, строим интервалы для неравенства:

Нас интересует промежуток, где знак минус, поскольку неравенство принимает там отрицательные значения, это от до оба включительно. А теперь включаем мозг и тщательно думаем: для неравенства мы применяли уравнение, описывающее полет мяча, он так или иначе летит по параболе, т.е. он взлетает, достигает пика и падает, как понять, сколько времени он будет находиться на высоте не менее метров? Мы нашли 2 переломные точки, т.е. момент, когда он взмывает выше метров и момент, когда он, падая, достигает этой же отметки, эти две точки выражены у нас в виде времени, т.е. мы знаем на какой секунде полета он вошел в интересующую нас зону (выше метров) и в какую вышел из нее (упал ниже отметки в метра). Сколько секунд он находился в этой зоне? Логично, что мы берем время выхода из зоны и вычитаем из него время вхождения в эту зону. Соответственно: - столько он находился в зоне выше метров, это и есть ответ.

Так уж тебе повезло, что больше всего примеров по этой теме можно взять из разряда задачек по физике, так что лови еще одну, она заключительная, так что поднапрягись, осталось совсем чуть-чуть!

Задача 5

Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры от времени работы:

Где — время в минутах, . Известно, что при температуре нагревательного элемента свыше прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.

Действуем по отлаженной схеме, все, что дано, сперва выписываем:

Теперь берем формулу и приравниваем ее к значению температуры, до которой максимально можно нагреть прибор пока он не сгорит, то есть:

Теперь подставляем вместо букв числа там, где они известны:

Как видишь, температура при работе прибора описывается квадратным уравнением, а значит, распределяется по параболе, т.е. прибор нагревается до какой-то температуры, а потом остывает. Мы получили ответы и, следовательно, при и при минутах нагревания температура равна критической, но между и минутами - она еще выше предельной!

А значит, отключить прибор нужно через минуты.

МАТЕМАТИЧЕСКИЕ МОДЕЛИ. КОРОТКО О ГЛАВНОМ

Чаще всего математические модели используются в физике: тебе ведь наверняка приходилось запоминать десятки физических формул. А формула - это и есть математическое представление ситуации.

В ОГЭ и ЕГЭ есть задачи как раз на эту тему. В ЕГЭ (профильном) это задача номер 11 (бывшая B12). В ОГЭ - задача номер 20.

Схема решения очевидна:

1) Из текста условия необходимо «вычленить» полезную информацию - то, что в задачах по физике мы пишем под словом «Дано». Этой полезной информацией являются:

  • Формула
  • Известные физические величины.

То есть каждой букве из формулы нужно поставить в соответствие определенное число.

2) Берешь все известные величины и подставляешь в формулу. Неизвестная величина так и остается в виде буквы. Теперь нужно только решить уравнение (обычно, довольно простое), и ответ готов.

Основные понятия математического моделирования; виды математических моделей.

Цель лекции:

Изучить основные понятия математического моделирования и виды математических моделей.

2.1 Основные термины в математическом моделировании

Каждая математическая модель представляет собой упорядоченную комбинацию таких составляющих как компоненты, переменные, параметры, функциональные зависимости.

Под компонентами модели понимают составные части, которые при соответствующем объединении образуют систему. Компоненты могут быть либо неделимые структурные образования ("элементы" модели), либо составные части, являющиеся "подсистемами".

Обычно входы и выходы системы называют переменными , остальные величины – параметрами. Эти допущения приняты условно. Без каких-либо дополнительных соглашений ответить невозможно, где переменные, а где параметры. В качестве такого соглашения может быть принят, например, класс функций. Деление переменных на входные и выходные тоже не является абсолютным. Это справедливо по отношению к определенной системе. Надо исходить из конкретной характеристики всей изучаемой системы. Входы системы (экзогенные переменные) порождаются вне изучаемой системы и являются результатом действия внешних причин. Выходы (эндогенные переменные) возникают в системе в результате действия на нее экзогенных переменных.

Главные составляющие модели – функциональные зависимости, которые описывают поведение переменных и параметров системы или компонента. Обычно они устанавливают внутренние отношения между экзогенными (х) и эндогенными (у) переменными либо между переменными и зависимыми от них параметрами (р):

а) y = φ(p,x),

б) р = ψ(x,y).

Функции φ часто называют операторными (или просто операторами), а функции ψ – параметрическими. Закон функционирования системы, может быть задан аналитически, графически, таблично и т.д.

Последняя составляющая моделей – ограничения . В простейшем случае к ограничениям относят область изменения вектора аргументов модели xD x . Параметры модели тоже могут задаваться на некотором разрешенном множестве pD p .

Чаще всего считается, что моделируемая система не оказывает действия на окружающую среду. Вопрос о допустимости пренебрежения внешней средой должен быть обоснован.

2.2. Основные виды математических моделей

Создание некоторой универсальной модели, отвечающей различным аспектам ее применения, практически невозможно. Для получения информации, отражающей те или иные свойства управляемого объекта, необходима классификация моделей. В основе классификации лежат особенности оператора φ . Все многообразие объектов управления, исходя из временного и пространственного признаков, можно разделить на следующие классы: статические или динамические; линейные или нелинейные; непрерывные или дискретные во времени; стационарные или нестационарные; процессы, в ходе которых их параметры изменяются в пространстве, и процессы без пространственного изменения параметров. Так как математические моделии являются отражением соответствующих объектов, то для них характерны те же классы. Полное наименование модели может включать в себя совокупность перечисленных признаков. Эти признаки послужили основой названия соответствующих типов моделей.

В зависимости от характера изучаемых процессов в системе все модели могут быть разделены на следующие виды:

Детерминированные модели – отображают детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий.

Стохастические модели – отображают вероятностные процессы и события; в этом случае анализируется ряд реализаций случайного процесса, и оцениваются средние характеристики.

Стационарные и нестационарные модели. Модель называется стационарной, если вид оператора φ и его параметры p не изменяются во времени, то есть, когда справедливо

φ= φ, т.е. y= φ(p,x).

Если же параметры модели изменяются во времени, то модель является

параметрически нестационарной

y= φ.

Самый общий вид нестационарности – когда от времени зависит и вид функции. Тогда в запись функции добавляется еще один аргумент

y= φ(p,t,x).

Статические и динамические модели. В основе такого разделения типов моделей лежат особенности движения исследуемого объекта как материальной системы.

Говоря о моделях с позиций задач управления, надо отметить, что под пространством здесь понимается не геометрическое пространство, а пространство состояний – координат состояний выходных переменных у . Элементами вектора y являются обычно контролируемые технологические параметры (расход, давление, температура, влажность, вязкость и т.д.). Состав элементов вектораy для самого объекта может быть шире, чем для модели этого объекта, так как при моделировании требуется изучение только части свойств реальной системы. Движение объекта управления в пространстве состояний и во времени оценивается с помощью векторного процесса y(t).

Модель системы называется статической , если состояние системы не изменяется, то есть система находится в равновесии, но движение связано со статичным состоянием объекта, находящегося в равновесии. Математическое описание в статических моделях не включает время как переменную и состоит из алгебраических уравнений либо дифференциальных уравнений в случае объектов с распределенными параметрами. Статические модели обычно являются нелинейными. Они точно отражают состояние равновесия, вызванное переходом объекта от одного режима к другому.

Динамическая модель отражает изменение состояния объекта во времени. Математическое описание таких моделей обязательно включает производную во времени. Динамические модели используют дифференциальные уравнения. Точные решения этих уравненийизвестны только для некоторого класса дифференциальных уравнений. Чаще приходится прибегать к использованию численных методов, являющихся приближенными.

Для целей управления динамическую модель представляют в виде передаточной функции, связывающей входные и выходные переменные.

Линейные и нелинейные модели. Математически функция L (x ) – линейна, если

L(λ 1 x 1 +λ 2 x 2)=λ 1 L(x 1)+λ 2 L(x 2).

Аналогично и для функций многих переменных. Линейной функции присуще использование только операций алгебраического сложения и умножения переменной на постоянный коэффициент. Если в выражении для оператора моделиесть нелинейные операции, то модель является нелинейной , в противном случае модель – линейна .

Модели с сосредоточенными и распределенными параметрами. Следует отметить, что с учетом введенной терминологии было бы корректнее в названии модели вместо слова «параметры» употреблять понятие «координата состояния». Однако это сложившееся название, которое часто встречается во всех работах по моделированию технологических процессов.

Если основные переменные процесса изменяются как во времени, так и в пространстве (или только в пространстве), то модели, описывающие такие процессы, называются моделями с распределенными параметрами. В этом случае вводится геометрическое пространство z =(z 1 , z 2 , z 3 ) и уравнения имеют вид:

y(z)=φ, p(z)=ψ.

Их математическое описание включает обычно дифференциальные уравнения в частных производных, либо обыкновенные дифференциальные уравнения в случае стационарных процессов с одной пространственной координатой.

Если можно пренебречь пространственной неравномерность значений координат состояний объекта, т.е. градиент , то соответствующая модель – модель с сосредоточенными параметрами. Для них масса и энергия как бы сосредоточены в одной точке.

Трехмерность пространства не всегда обязательна. Например, модель змеевика с нагреваемым рабочим телом и с тонкостенной оболочкой обычно исходит из одномерности объекта – учитывается только длина змеевика. В то же время процесс передачи тепла в ограниченный объем рабочего тела через толстую стенку может быть описан одномерной моделью, учитывающей только толщину оболочки и т.п. Для конкретных объектов форма соответствующих уравнений требует обоснований.

Модели непрерывные и дискретные во времени. Непрерывные модели отражают непрерывные процессы в системах. Модели, описывающие состояние объектов относительно времени как непрерывного аргумента – непрерывные (по времени):

y(t)=φ, p(t)=ψ.

Дискретные модели служат для описания процессов, которые предполагаются дискретными. Дискретная модель не может дать прогноз поведения объекта на интервале между дискретными отсчетами времени. Если введем квантование по времени с шагом ∆t, то рассматривается дискретная шкала , где i=0,1,2…- приобретает смысл относительного времени. И дискретная модель:

y(i)=φ; p(i)=ψ.

При правильном выборе шага ∆t можно ожидать от дискретной модели результата с наперед заданной точностью. При изменении ∆t должны быть пересчитаны и коэффициенты разностного уравнения.

Дискретно-непрерывные модели используются для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

Требования, предъявляемые к математическим моделям: точность – свойство, отражающее степень совпадения предсказанных с помощью модели значений параметров объекта с их истинными значениями; экономичность затрат машинного времени; универсальность – применимость к анализу группы однотипных объектов.

Выше отмечалось, что любая математическая модель может рассматриваться как некоторый оператор А, который является алгоритмом или определяется совокупностью уравнений - алгебраических, обыкновенных дифференциальных уравнений (ОДУ), систем ОДУ (СОДУ), дифференциальных уравнений в частных производных (ДУЧП), интегродифференциальных уравнений (ИДУ) и др. (рис. 1.6).

Если оператор обеспечивает линейную зависимость выходных параметров от значений входных параметров X, то математическая модель называется линейной (рис. 1.7). Линейные модели более просты для анализа. Например, из свойства линейности следует свойство суперпозиции решений, т.е. если известны решения при и при , то решение для выходных параметров при есть . Предельные значения для линейных моделей достигаются, как правило, на границах областей допустимых значений входных параметров.

Линейное поведение свойственно относительно простым объектам. Системам, как правило, присуще нелинейное многовариантное поведение (рис. 1.8). Соответственно модели подразделяются на нелинейные.

В зависимости от вида оператора математические модели можно разделить на простые и сложные.

В случае, когда оператор модели является алгебраическим выражением, отражающим функциональную зависимость выходных параметров fot входных X, модель будем называть простой.

В качестве примеров простых моделей можно привести многие законы физики (закон всемирного тяготения, закон Ома, закон Гука, закон трения Амонтона-Кулона), а также все эмпирические, т.е. полученные из опыта, алгебраические зависимости между входными и выходными параметрами.

Модель, включающая системы дифференциальных и интегральных соотношений, уже не может быть отнесена к простым, так как для своего исследования требует применения довольно сложных математических методов. Однако в двух случаях она может быть сведена к простым:

если полученная для подобной модели система математических соотношений может быть разрешена аналитически;

если результаты вычислительных экспериментов со сложной моделью аппроксимированы некоторой алгебраической зависимостью. В настоящее время известно достаточно большое число подходов и методов аппроксимации (например, метод наименьших квадратов или метод планирования экспериментов).

На практике довольно часто возникают ситуации, когда удовлетворительное описание свойств и поведения объекта моделирования (как правило, сложной системы) не удается выполнить с помощью математических соотношений. Однако в большинстве случаев удается построить некоторый имитатор поведения и свойств такого объекта с помощью алгоритма, который можно считать оператором модели.



Например, если в результате наблюдения за объектом получена таблица соответствия между входными Х и выходными значениями параметров, то определить оператор А, позволяющий получить «выход» по заданному «входу», зачастую бывает проще с помощью алгоритма.

Классификация математических моделей в зависимости от параметров модели (рис. 1.9)


В общем случае параметры, описывающие состояние и поведение объекта моделирования, разбиваются на ряд непересекающихся подмножеств

совокупность входных (управляемых) воздействий на объект ();

совокупность воздействий внешней среды (неуправляемых) ();

совокупность внутренних (собственных) параметров объекта ();

совокупность выходных характеристик ().

Например, при моделировании движения материальной точки в поле сил тяжести входными параметрами могут быть начальное положение и начальная скорость точки в момент времени . Сила сопротивления и сила тяжести характеризуют воздействие внешней среды. Масса точки является собственным параметром. Координата и скорость точки (при ) относятся к выходным параметрам. Отнесение параметров к входным или выходным зависит от постановки конкретной задачи. Поэтому всегда существуют прямые и обратные задачи.

Входные параметры , параметры, описывающие воздействие внешней среды , и внутренние (собственные) характеристики объекта относят обычно к независимым (экзогенным) величинам. Выходные параметры - зависимые (эндогенные) величины. В общем случае оператор модели преобразует экзогенные параметры в эндогенные .

По своей природе характеристики объекта могут быть как качественными , так и количественными . Для количественной характеристики вводятся числа, выражающие отношения между данным параметром и эталоном (например «метром»). Кроме того, количественные значения параметра могут выражаться дискретными или непрерывными величинами . Качественные характеристики находятся, например методом экспертных оценок. В зависимости от вида используемых множеств параметров модели могут подразделяться на качественные и количественные, дискретные и непрерывные, a также смешанные.

При построении модели возможны следующие варианты описания неопределенности параметров:

детерминированное - значения всех параметров модели определяются детерминированными величинами (т.е. каждому параметру соответствует конкретное целое, вещественное или комплексное число либо соответствующая функция). Данный способ соответствует полной определенности параметров;

стохастическое - значения всех или отдельных параметров модели определяются случайными величинами, заданными плотностями вероятности. Например, случаи нормального (гауссова) и показательного распределения случайных величин;

случайное - значения всех или отдельных параметров модели устанавливаются случайными величинами, заданными оценками плотностей вероятности, полученными в результате обработки ограниченной экспериментальной выборки данных параметров;

интервальное - значения всех или отдельных параметров модели описываются интервальными величинами, заданными интервалом, образованным минимальным и максимально возможными значениями параметра;

нечеткое - значения всех или отдельных параметров модели описываются функциями принадлежности соответствующему нечеткому множеству. Такая форма используется, когда информация о параметрах модели задается экспертом на естественном языке, а, следовательно, в «нечетких» терминах типа «много больше пяти», «около нуля».

Разделение моделей на одномерные, двухмерные и трехмерные применимо для таких моделей, в число параметров которых входят координаты пространства, и связано с особенностями реализации этих моделей, равно как и с резким увеличением их сложности при возрастании размерности.

Как и координаты, время относится к независимым переменным, от которых могут зависеть остальные параметры модели. Обычно чем меньше масштаб объекта, тем существеннее зависимость его параметров от времени.

Любой объект стремится перейти в некоторое равновесное состояние, как с окружающей его средой, так и между отдельными элементами самого объекта. Нарушение этого равновесия приводит к изменениям различных параметров объекта и его переходу в новое равновесное состояние.

При построении модели важным является сравнение времени существенных изменений внешних воздействий и характерных временных переходов объекта в новое равновесное состояние с окружающей средой, а также времени релаксации, определяющего установление равновесия между отдельными элементами внутри объекта. Если скорости изменения внешних воздействий на объект моделирования существенно меньше скорости релаксации, то явной зависимостью от времени в модели можно пренебречь. В этом случае говорят о квазистатическом процессе.

Совокупность значений параметров модели в некоторый момент времени или на данной стадии называется состоянием объекта.

Если скорости изменения внешних воздействий и параметров состояния изучаемого объекта достаточно велики (по сравнению со скоростями релаксации), то учет времени необходим. В этом случае объект исследования рассматривают в рамках динамического процесса .

В случае если внешние воздействия остаются постоянными или их колебания слабо отражаются на состоянии объекта в течении достаточно длительного промежутка времени то тогда в каждой фиксированной точке исследуемого пространства значения параметров модели не зависят от времени. Например, поле скоростей частиц жидкости в длинной трубе при ламинарном режиме. Подобные процессы называют стационарными . Как правило, стационарные модели применяются для описания различных потоков (жидкости, газа, тепла) в случае постоянства условий на входе и выходе потока. Для таких процессов время может быть исключено из числа независимых переменных.

Если в качестве одной из существенных независимых переменных модели необходимо использовать время (или его аналог), то модель называется нестационарной . Примером нестационарной модели является модель движения жидкости в трубе, но вытекающей из некоторого сосуда.


Классификация математических моделей в зависимости от целей моделирования (рис. 1.11)

Целью дескриптивных моделей является установление законов изменения параметров модели. Полученная модель описывает зависимость выходных параметров от входных. Поэтому дескриптивные модели являются реализацией описательных и объяснительных содержательных моделей на формальном уровне моделирования.

Оптимизационные модели предназначены для определения оптимальных (наилучших) с точки зрения некоторого критерия параметров моделируемого объекта или же для поиска оптимального (наилучшего) режима управления некоторым процессом. Часть параметров модели относят к параметрам управления, изменяя которые можно получать различные варианты наборов значений выходных параметров. Как правило, данные модели строятся с использованием одной или нескольких дескриптивных моделей и включают некоторый критерий, позволяющий сравнивать различные варианты наборов значений выходных параметров между собой с целью выбора наилучшего. На область значений входных параметров могут быть наложены ограничения в виде равенств и неравенств, связанные с особенностями рассматриваемого объекта или процесса. Целью оптимизационных моделей является поиск таких допустимых параметров управления, при которых критерий выбора достигает своего «наилучшего значения».

Управленческие модели применяются для принятия эффективных управленческих решений в различных областях целенаправленной деятельности человека. В общем случае принятие решений является процессом, по своей сложности сравнимым с процессом мышления в целом. Однако на практике под принятием решений обычно понимается выбор некоторых альтернатив из заданного их множества, а общий процесс принятия решений представляется как последовательность таких выборов альтернатив.

Сложность задачи заключается в наличии неопределенности как по исходной информации и характеру воздействия внешних условий, так и по целям. Поэтому в отличие от оптимизационных моделей, где критерий выбора считается определенным и искомое решение устанавливается из условий его экстремальности (максимума или минимума), в управленческих моделях необходимо введение специфических критериев оптимальности, которые позволяют сравнивать альтернативы при различных неопределенностях задачи.

Поскольку оптимальность принятого решения даже в одной и той же ситуации может пониматься по-разному, вид критерия оптимальности в управленческих моделях заранее не фиксируется. Именно в этом состоит основная особенность данных моделей.

Классификация математических моделей в зависимости от методов реализации (рис. 1.12)


Метод реализации модели относят к аналитическим , если он позволяет получить выходные параметры в виде аналитических выражений, т.е. выражений, в которых используется не более чем счетная совокупность арифметических операций и переходов к пределу. Примеры аналитических выражений:

,

Частным случаем аналитических выражений являются алгебраические выражения, в которых используется конечное или счетное число арифметических операций, операций возведения в целочисленную степень и извлечения корня. Пример алгебраических выражений: .

Очень часто аналитическое решение для модели представляют в элементарных или специальных функциях. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора). Так, показательная функция может быть представлена следующим рядом:

Учитывая различное число членов ряда, можно вычислять значение функции с различной степенью точности. Таким образом, значение функции при каждом значении аргумента в этом случае определяется приближенно. Модели, использующие подобный прием, называются приближенными .

Аналитические методы реализации модели являются более ценными, однако их не всегда можно получить.

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т.е. переходом от функций непрерывного аргумента к функциям дискретного аргумента. После дискретизации исходной задачи выполняется построение вычислительного алгоритма. Найденное решение дискретной задачи принимается за приближенное решение исходной математической задачи. Основным требованием к вычислительному алгоритму является необходимость получения решения исходной задачи с заданной точностью за конечное число шагов.

При имитационном подходе на отдельные элементы разбивается сам объект исследования. В этом случае система математических соотношений для объекта-системы в целом не записывается, а заменяется некоторым алгоритмом, моделирующим ее поведение и учитывающим взаимодействие друг с другом моделей отдельных элементов системы. Модели отдельных элементов могут быть как аналитическими, так и алгебраическими.

ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Отличительной особенностью математических моделей, создаваемых в настоящее время, является их комплексность, связанная со сложностью моделируемых объектов. Что приводит к усложнению модели и необходимости совместного использования нескольких теорий (нередко - из разных областей знания), применения современных вычислительных методов и вычислительной техники для получения и анализа результатов моделирования. Сегодня повсеместное использование моделей в практике инженерно-технической деятельности вызвало необходимость в алгоритме построения мат. моделей.

Процесс построения любой математической модели можно представить последовательностью этапов, представленных на рис. 2.1.

2.1. ОБСЛЕДОВАНИЕ ОБЪЕКТА МОДЕЛИРОВАНИЯ

Математические модели, особенно использующие численные методы и вычислительную технику, требуют для своего построения значительных интеллектуальных, финансовых и временных затрат. Поэтому решение о разработке новой модели принимается лишь в случае отсутствия иных, более простых путей решения возникших проблем (например, модификации одной из существующих моделей). Если это решение все-таки принято, то порядок действий следующий.

Основной целью этапа обследования объекта моделирования является подготовка содержательной постановки задачи моделирования.

Перечень сформулированных в содержательной (словесной) форме основных интересующих вопросов об объекте моделирования составляет содержательную постановку задачи моделирования.

Этап обследования включает следующие работы:

тщательное обследование собственно объекта моделирования с целью выявления основных факторов, механизмов, влияющих на его поведение, определения соответствующих параметров, позволяющих описывать моделируемый объект;

сбор и проверка имеющихся экспериментальных данных об объектах-аналогах, проведение при необходимости дополнительных экспериментов;

аналитический обзор литературных источников, анализ и сравнение между собой построенных ранее моделей данного объекта (или подобных рассматриваемому объекту);

анализ и обобщение всего накопленного материала, разработка общего плана создания математической модели.

Весь собранный в результате обследования материал о накопленных к данному моменту знаниях об объекте, содержательная постановка задачи моделирования, дополнительные требования к реализации модели и представлению результатов оформляются в виде технического задания на проектирование и разработку модели .

Разработать математическую модель, позволяющую описать полет баскетбольного мяча, брошенного игроком в баскетбольную корзину.

Модель должна позволять:

вычислять положение мяча в любой момент времени;

определять точность попадания мяча в корзину после броска при различных начальных параметрах.

Исходные данные:

масса и радиус мяча;

начальные координаты, начальная скорость и угол броска мяча;

координаты центра и радиус корзины.

2.2. КОНЦЕПТУАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Концептуальная постановка задачи моделирования - это сформулированный в терминах конкретных дисциплин (физики, химии, биологии и т.д.) перечень основных интересующих вопросов, а также совокупность гипотез относительно свойств и поведения объекта моделирования.

Концептуальная модель строится как некоторая идеализированная модель объекта, записанная в терминах конкретных дисциплин. Для этого формулируется совокупность гипотез о поведении объекта, его взаимодействии с окружающей средой, изменении внутренних параметров. Как правило, эти гипотезы правдоподобны, так как для их обоснования могут быть приведены некоторые теоретические доводы и использованы экспериментальные данные, основанные на собранной ранее информации об объекте. Согласно принятым гипотезам определяется множество параметров, описывающих состояние объекта, а также перечень законов, управляющих изменением и взаимосвязью этих параметров между собой.

Пример. Концептуальная постановка задачи о баскетболисте.

Движение баскетбольного мяча может быть описано в соответствии с законами классической механики Ньютона (рис. 2.2).

Примем следующие гипотезы:

объектом моделирования является баскетбольный мяч радиуса ;

движение происходит в поле сил тяжести с постоянным ускорением свободного падения и описывается уравнениями классической механики Ньютона;

движение мяча происходит в одной плоскости, перпендикулярной поверхности Земли и проходящей через точку броска и центр корзины;

пренебрегаем сопротивлением воздуха и возмущениями, вызванными собственным вращением мяча вокруг центра масс.

В соответствии с изложенными гипотезами в качестве параметров движения мяча можно использовать координаты и скорость (ее проекции и ) центра масс мяча. Тогда для определения положения мяча в любой момент времени достаточно найти закон движения центра масс мяча, т.е. зависимость координат и проекций вектора скорости и центра мяча от времени. В качестве оценки точности броска можно рассматривать величину расстояния по горизонтали (вдоль оси )от центра корзины до центра мяча в момент, когда последний пересекает горизонтальную плоскость, проходящую через плоскость кольца корзины.

С учетом вышеизложенного можно сформулировать концептуальную постановку задачи о баскетболисте в следующем виде: определить закон движения материальной точки массой под действием силы тяжести, если известны начальные координаты точки , ее начальная скорость и угол бросания . Центр корзины имеет координаты . Вычислить точность броска , где определяется из условий: , , .

Рассмотрим особенности приведенной в примере концептуальной постановки задачи о баскетболисте.

Первая из перечисленных гипотез особенно важна, так как она выделяет объект моделирования. В данном случае объект можно считать простым. Однако в качестве объекта моделирования можно рассматривать систему «игрок - мяч - кольцо». Требуемая для описания подобной системы модель будет уже намного сложнее, так как игрок в свою очередь представляет сложную биомеханическую систему и его моделирование является сложной задачей. В данной ситуации выбор в качестве объекта моделирования только мяча обоснован, поскольку именно его движение требуется исследовать, а влияние игрока можно учесть достаточно просто через начальные параметры броска.

Гипотеза о том, что мяч можно считать материальной точкой, широко применяется для исследования движений тел в механике. В рассматриваемом случае она оправдана в силу симметрии формы мяча и малости его радиуса по сравнению с характерными расстояниями перемещения мяча. Предполагается, что последний является шаром с одинаковой толщиной стенки.

Гипотезу о применимости в данном случае законов классической механики можно обосновать огромным экспериментальным материалом, связанным с изучением движения тел вблизи поверхности Земли со скоростями много меньше скорости света. Учитывая, что высота полета мяча лежит в пределах 5-10 м, а дальность - 5-20 м, предположение о постоянстве ускорения свободного падения также представляется обоснованным. Если бы моделировалось движение баллистической ракеты при дальности и высоте полета более 100 км, то пришлось бы учитывать изменение ускорения свободного падения в зависимости от высоты и широты места.

Гипотеза о движении мяча в плоскости, перпендикулярной поверхности Земли, ограничивает класс рассматриваемых траекторий и значительно упрощает модель. Траектория мяча может не лежать в одной плоскости, если при броске он сильно подкручивается вокруг вертикальной оси. В этом случае скорости точек поверхности мяча относительно воздуха на различных сторонах мяча будут различны. Для точек, движущихся навстречу потоку, относительная скорость выше, а для точек противоположной стороны, движущихся по потоку, - ниже скорости центра масс мяча. В соответствии с законом Бернулли, давление газа на поверхность больше там, где его относительная скорость меньше. Поэтому для ситуации, изображенной на рис. 2.3, на мяч будет действовать дополнительная сила, направленная (для данной схемы) сверху вниз. Этот эффект будет проявляться тем больше, чем больше скорость центра масс мяча и скорость его вращения. Для баскетбола характерны относительно низкие скорости полета мяча (до 10 м/с). При этом довольно редко используется подкрутка мяча рукой. Поэтому гипотеза о движении мяча в одной плоскости кажется оправданной. Ее использование позволяет отказаться от построения значительно более сложной трехмерной модели движения мяча.

Гипотеза об отсутствии влияния сопротивления воздуха наименее обоснована. При движении тела в газе или жидкости сила сопротивления увеличивается с ростом скорости движения. Учитывая невысокие скорости движения мяча, его правильную обтекаемую форму и малые дальности бросков, указанная гипотеза может быть принята в качестве первого приближения.

Следует отметить, что концептуальная постановка задачи моделирования в отличие от содержательной постановки использует терминологию конкретной дисциплины (в рассматриваемом случае - механики). При этом моделируемый реальный объект (мяч) заменяется его механической моделью (материальной точкой). Фактически в приведенном примере концептуальная постановка свелась к постановке классической задачи механики о движении материальной точки в поле сил тяжести. Концептуальная постановка более абстрактна по отношению к содержательной, так как материальной точке можно сопоставить произвольный материальный объект, брошенный под углом к горизонту: футбольный мяч, ядро, камень или артиллерийский снаряд.

2.3. МАТЕМАТИЧЕСКАЯ ПОСТАНОВКА ЗАДАЧИ МОДЕЛИРОВАНИЯ

Законченная концептуальная постановка позволяет сформулировать математическую постановку задачи моделирования, включающую совокупность различных математических соотношений, описывающих поведение и свойства объекта моделирования.

Математическая постановка задачи моделирования - это совокупность математических соотношений, описывающих поведение и свойства объекта моделирования.

Совокупность математических соотношений определяет вид оператора модели. Наиболее простым будет оператор модели в случае, если он представлен системой алгебраических уравнений. Подобные модели можно назвать моделями аппроксимационного типа , так как для их получения часто используют различные методы аппроксимации имеющихся экспериментальных данных о поведении выходных параметров объекта моделирования в зависимости от входных параметров и воздействий внешней среды, а также от значений внутренних параметров объекта.

Однако область применения моделей подобного типа ограничена. Для создания математических моделей сложных систем и процессов, применимых для широкого класса реальных задач требуется, как уже отмечалось выше, привлечение большого объема знаний, накопленных в рассматриваемой дисциплине (а в некоторых случаях и в смежных областях). В большинстве дисциплин (особенно естественно-научных) эти знания сконцентрированы в аксиомах, законах, теоремах, имеющих четкую математическую формулировку.

Следует отметить, что во многих областях знаний (механике, физике, биологии и т.д.) принято выделять законы, справедливые для всех объектов исследования данной области знаний, и соотношения, описывающие поведение отдельных объектов или их совокупностей. К числу первых в физике и механике относятся, например, уравнения баланса массы, количества движения, энергии и т.д., справедливые при определенных условиях для любых материальных тел, независимо от их конкретного строения, структуры, состояния, химического состава. Уравнения этого класса подтверждены огромным количеством экспериментов, хорошо изучены и в силу этого применяются в соответствующих математических моделях как данность. Соотношения второго класса в физике и механике называют определяющими, или физическими уравнениями, или уравнениями состояния. Они устанавливают особенности поведения материальных объектов или их совокупностей (например, жидкостей, газов, упругих или пластических сред и т.д.) при воздействиях различных внешних факторов.

Соотношения второго класса гораздо менее изучены, а в ряде случаев их приходится устанавливать самому исследователю (особенно при анализе объектов, состоящих из новых материалов). Необходимо отметить, что определяющие соотношения - это основной элемент любой математической модели физико-механических процессов. Именно ошибки в выборе или установлении определяющих соотношений приводят к количественно (а иногда и качественно) неверным результатам моделирования.

Совокупность математических соотношений указанных двух классов определяет оператор модели. В большинстве случаев оператор модели включает в себя систему обыкновенных дифференциальных уравнений (ОДУ), дифференциальных уравнений в частных производных (ДУЧП) и/или интегродифференциальных уравнений (ИДУ). Для обеспечения корректности постановки задачи к системе ОДУ или ДУЧП добавляются начальные или граничные условия, которые, в свою очередь, могут быть алгебраическими или дифференциальными соотношениями различного порядка.

Можно выделить несколько наиболее распространенных типов задач для систем ОДУ или ДУЧП:

задача Коши, или задача с начальными условиями, в которой по заданным в начальный момент времени переменным (начальным условиям) определяются значения этих искомых переменных для любого момента времени;

начально-граничная, или краевая, задача, когда условия на искомую функцию выходного параметра задаются в начальный момент времени для всей пространственной области и на границе последней в каждый момент времени (на исследуемом интервале);

задачи на собственные значения, в формулировку которых входят неопределенные параметры, определяемые из условия качественного изменения поведения системы (например, потеря устойчивости состояния равновесия или стационарного движения, появление периодического режима, резонанс и т.д.).

Для контроля правильности полученной системы математических соотношений требуется проведение ряда обязательных проверок:

Контроль размерностей, включающий правило, согласно которому приравниваться и складываться могут только величины одинаковой размерности. При переходе к вычислениям данная проверка сочетается с контролем использования одной и той же системы единиц для значений всех параметров.

Контроль порядков, состоящий из грубой оценки сравнительных порядков складываемых величин и исключением малозначимых параметров. Например, если для выражения в результате оценки установлено, что в рассматриваемой области значений параметров модели и третьим слагаемым в исходном выражении можно пренебречь.

Контроль характера зависимостей заключается в проверке того, что направление и скорость изменения выходных параметров модели, вытекающие из выписанных математических соотношений, такие, как это следует непосредственно из «физического» смысла изучаемой модели.

Контроль экстремальных ситуаций - проверка того, какой вид принимают математические соотношения, а также результаты моделирования, если параметры модели или их комбинации приближаются к предельно допустимым для них значениям, чаще всего к нулю или бесконечности. В подобных экстремальных ситуациях модель часто упрощается, математические соотношения приобретают более наглядный смысл, упрощается их проверка. Например, в задачах механики деформируемого твердого тела деформация материала в исследуемой области в изотермических условиях возможна лишь при приложении нагрузок, отсутствие же нагрузок должно приводить к отсутствию деформаций.

Контроль граничных условий, включающий проверку того, что граничные условия действительно наложены, что они использованы в процессе построения искомого решения и что значения выходных параметров модели на самом деле удовлетворяют данным условиям.

Контроль физического смысла - проверка физического или иного, в зависимости от характера задачи, смысла исходных и промежуточных соотношений, появляющихся по мере конструирования модели.

Контроль математической замкнутости, состоящий в проверке того, что выписанная система математических соотношений дает возможность, притом однозначно, решить поставленную математическую задачу. Например, если задача свелась к отысканию неизвестных из некоторой системы алгебраических или трансцендентных уравнений, то контроль замкнутости состоит в проверке того факта, что число независимых уравнений должно быть . Если их меньше и, то надо установить недостающие уравнения, а если их больше я, то либо уравнения зависимы, либо при их составлении допущена ошибка. Однако если уравнения получаются из эксперимента или в результате наблюдений, то возможна постановка задачи, при которой число уравнений превышает , но сами уравнения удовлетворяются лишь приближенно, а решение ищется, например, по методу наименьших квадратов. Неравенств среди условий также может быть любое число, как это бывает, например, в задачах линейного программирования.

Свойство математической замкнутости системы математических соотношений тесно связано понятием корректно поставленной математической задачи, т.е. задачи, для которой решение существует, оно единственно и непрерывно зависит от исходных данных. В данном случае решение считается непрерывным, если малому изменению исходных данных соответствует достаточно малое изменение решения.

Понятие корректности задачи имеет большое значение в прикладной математике. Например, численные методы решения оправдано применять лишь к корректно поставленным задачам. При этом далеко не все задачи, возникающие на практике, можно считать корректными (например, так называемые обратные задачи). Доказательство корректности конкретной математической задачи - достаточно сложная проблема, она решена только для некоторого класса математически поставленных задач. Проверка математической замкнутости является менее сложной по сравнению с проверкой корректности математической постановки. В настоящее время активно исследуются свойства некорректных задач, разрабатываются методы их решения. Аналогично понятию «корректно поставленная задача» можно ввести понятие «корректная математическая модель».

Математическая модель является корректной, если для нее осуществлен и получен положительный результат всех контрольных проверок: размерности, порядков, характера зависимостей, экстремальных ситуаций, граничных условий, физического смысла и математической замкнутости.

Пример. Математическая постановка задачи о баскетболисте.

Математическую постановку задачи о баскетболисте можно представить как в векторной, так и в координатной форме (рис. 2.4).

1. Векторная форма.

Найти зависимости векторных параметров от времени - и - из решения системы обыкновенных дифференциальных уравнений

,

при начальных условиях

,

Вычислить параметр по формуле

где определить из следующих условий:

, , ,

Проецируя векторные соотношения - на оси координат, получим математическую постановку задачи о баскетболисте в координатной форме.

2. Координатная форма.

Найти зависимости , и , из решения системы диф­ференциальных уравнений:

, , , ,

при следующих начальных условиях:

, , ,

Вычислить параметр по формуле

где определить из условий

, ,

Как можно видеть, с математической точки зрения задача о баскетболисте свелась к задаче Коши для системы ОДУ первого порядка с заданными начальными условиями. Полученная система уравнений является замкнутой, так как число независимых уравнений (четыре дифференциальных и два алгебраических) равно числу искомых параметров задачи ( , , , , , ). Выполним контроль размерностей задачи:

уравнение динамики

связь скорости и перемещения

Существование и единственность решения задачи Коши доказана математиками. Поэтому данную математическую модель можно считать корректной.

Математическая постановка задачи еще более абстрактна, чем концептуальная, так как сводит исходную задачу к чисто математической (например, к задаче Коши), методы решения которой достаточно хорошо разработаны. Умение свести исходную проблему к известному классу математических задач и обосновать правомочность такого сведения требует высокой квалификации математика-прикладника и особенно высоко ценится в исследовательских коллективах.

2.4. ВЫБОР И ОБОСНОВАНИЕ ВЫБОРА МЕТОДА РЕШЕНИЯ ЗАДАЧИ

При использовании разработанных математических моделей, как правило, требуется найти зависимость некоторых неизвестных заранее параметров объекта моделирования (например, координат и скорости центра масс тела, точности броска), удовлетворяющих определенной системе уравнений. Таким образом, поиск решения задачи сводится к отысканию некоторых зависимостей искомых величин от исходных параметров модели. Как уже было отмечено ранее, все методы решения задач, составляющих «ядро» математических моделей, можно подразделить на аналитические и алгоритмические.

Следует отметить, что при использовании аналитических решений для получения результатов «в числах» также часто требуется разработка соответствующих алгоритмов, реализуемых на ЭВМ. Однако исходное решение при этом представляет собой аналитическое выражение (или их совокупность). Решения же, основанные на алгоритмических методах, принципиально не сводимы к точным аналитическим решениям рассматриваемой задачи.

Выбор того или иного метода исследования в значительной степени зависит от квалификации и опыта членов рабочей группы. Как уже было отмечено, аналитические методы более удобны для последующего анализа результатов, но применимы лишь для относительно простых моделей. В случае, если математическая задача (хотя бы и в упрощенной постановке) допускает аналитическое решение, последнее, без сомнения, предпочтительнее численного.

Алгоритмические методы сводятся к некоторому алгоритму, реализующему вычислительный эксперимент с использованием ЭВМ. Точность моделирования в подобном эксперименте существенно зависит от выбранного метода и его параметров (например, шага интегрирования). Алгоритмические методы, как правило, более трудоемки в реализации, требуют хорошего знания методов вычислительной математики, обширной библиотеки специального программного обеспечения и вычислительной техники. Современные модели на базе алгоритмических методов разрабатываются в исследовательских организациях, которые зарекомендовали себя как авторитетные научные школы в соответствующей области знания.

Причем численные методы применимы лишь для корректных математических задач, что существенно ограничивает использование их в математическом моделировании.

Общим для всех численных методов является сведение математической задачи к конечномерной. Это чаще всего достигается дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функциям дискретного аргумента. Например, траектория центра тяжести баскетбольного мяча определяется не как непрерывная функция времени, а как табличная (дискретная) функция координат от времени, т.е. определяющая значения координат лишь для конечного числа моментов времени. Полученное решение дискретной задачи принимается за приближенное решение исходной математической задачи.

Применение любого численного метода неминуемо приводит к погрешности результатов решения задачи. Выделяют три основных составляющих возникающей погрешности при численном решении исходной задачи:

неустранимая погрешность, связанная с неточным заданием исходных данных (начальные и граничные условия, коэффициенты и правые части уравнений);

погрешность метода, связанная с переходом к дискретному аналогу исходной задачи (например, заменяя производную разностным аналогом
, получаем погрешность дискретизации, имеющую при порядок );

ошибка округления, связанная с конечной разрядностью чисел, представляемых в ЭВМ.

Естественным требованием для конкретного вычислительного алгоритма является согласованность в порядках величин перечисленных трех видов погрешностей.

Численный, или приближенный, метод реализуется всегда в виде вычислительного алгоритма. Поэтому все требования, предъявляемые к алгоритму, применимы и к вычислительному алгоритму. Прежде всего, алгоритм должен быть реализуем - обеспечивать решение задачи за допустимое машинное время. Важной характеристикой алгоритма является его точность, т.е. возможность получения решения исходной задачи с заданной точностью за конечное число действий. Очевидно, чем меньше , тем больше затрачиваемое машинное время. Для очень малых значений время вычислений может быть недопустимо большим. Поэтому на практике добиваются некоторого компромисса между точностью и затрачиваемым машинным временем. Очевидно, что для каждой задачи, алгоритма и типа ЭВМ имеется свое характерное значение достигаемой точности.

Время работы алгоритма зависит от числа действий , необходимых для достижения заданной точности. Для любой математической задачи, как правило, можно предложить несколько алгоритмов, позволяющих получить решение с заданной точностью, но за разное число действий . Алгоритмы, включающие меньшее число действий для достижения одинаковой точности, будем называть более экономичными, или более эффективными.

В процессе работы вычислительного алгоритма на каждом акте вычислений возникает некоторая погрешность. При этом от действия к действию она может возрастать или не возрастать (а в некоторых случаях даже уменьшаться). Если погрешность в процессе вычислений неограниченно возрастает, то такой алгоритм называется неустойчивым, или расходящимся. В противном случае алгоритм называется устойчивым, или сходящимся.

Выше уже отмечалось, что вычислительная математика объединяет огромный пласт разнообразных, быстро развивающихся численных и приближенных методов, поэтому практически невозможно привести их законченную классификацию. Стремление получить более точные, эффективные и устойчивые вычислительные алгоритмы приводит к появлению многочисленных модификаций, учитывающих специфические особенности конкретной математической задачи или даже особенности моделируемых объектов.

Можно выделить следующие группы численных методов по объектам, к которым они применяются:

интерполяция и численное дифференцирование;

численное интегрирование;

определение корней линейных и нелинейных уравнений;

решение систем линейных уравнений (подразделяют на прямые и итерационные методы);

решение систем нелинейных уравнений;

решение задачи Коши для обыкновенных дифференциальных уравнений;

решение краевых задач для обыкновенных дифференциальных уравнений;

решение уравнений в частных производных;

решение интегральных уравнений.

Огромное разнообразие численных методов в значительной степени затрудняет выбор того или иного метода в каждом конкретном случае. Поскольку для реализации одной и той же модели можно использовать несколько альтернативных алгоритмических методов, то выбор конкретного метода производится с учетом того, какой из них больше подходит для данной модели с точки зрения обеспечения эффективности, устойчивости и точности результатов, а также более освоен и знаком членам рабочей группы. Освоение нового метода, как правило, очень трудоемко и связано с большими временными и финансовыми затратами. При этом основные затраты связаны с разработкой и отладкой необходимого программного обеспечения для соответствующего класса ЭВМ, обеспечивающего реализацию данного метода.

Следует отметить, что вычислительная математика в определенном смысле являет собой более искусство, нежели науку (в понимании последней как области культуры, базирующейся на формальной логике). Очень часто эффективность применяемых методов, разработанных программ определяется нарабатываемыми годами и десятками лет интуитивными приемами, не обоснованными с математических позиций. В связи с этим эффективность одного и того же метода может весьма существенно отличаться при его применении различными исследователями.

Пример. Аналитическое решение задачи о баскетболисте.

Константы интегрирования найдем из начальных условий (2.6). Тогда решение задачи можно записать следующим образом:

,
, , (2.9)

Для получения решения рассмотренной выше задачи о баскетболисте можно использовать как аналитические, так и численные методы. Проинтегрировав соотношения записанные на прошлой паре по времени, получим

, , , , (2.10)

Примем для простоты, что в момент броска мяч находится в начале координат и на одном уровне с корзиной (т.е. ). Под дальностью броска будем понимать расстояние вдоль оси , которое пролетит мяч от точки броска до пересечения с горизонтальной плоскостью, проходящей через кольцо корзины. Из соотношений (2.10) дальность броска выразится следующим образом:

(2,11)

С учетом (2.7) точность броска

(2.12)

Например, при броске мяча со штрафной линии можно принять следующие исходные данные: ; м; м/с; . Тогда из (2.11) и (2.12) имеем м; м.

Пример . Алгоритмическое решение задачи о баскетболисте.

В простейшем случае можно использовать метод Эйлера. Алгоритм решения данной задачи на псевдокоде приведен ниже.

Алгоритм 2.1

program basket {Задача о баскетболисте};

{Данные : m, R - масса и радиус мяча;

x0, y0 - начальные координаты мяча;

v0, a0 - начальная скорость и угол броска мяча;

xk, yk - координаты центра корзины;

t - текущее время;

dt - шаг по времени;

fx, fy - силы, действующие на мяч;

x, y, vx, vy - текущие координаты и проекции скорости мяча.

Результаты : L и D - дальность и точность броска.}

m:=0.6; R:=0.12;

v0:=6.44; a0:=45;

1. Экономико-математические модели классифицируются по разным основаниям.

По целевому назначению они делятся на:

Теоретико-аналитические – в исследованиях общих свойств и закономерностей;

Прикладные – при решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут быть использованы при исследовании разных сторон производства и его отдельных частей.

По исследуемым экономическим процессами содержательной проблематике экономико-математические модели делятся на:

Модели производства в целом и его подсистем – отраслей, регионов и т. д.;

Комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т. д.

В соответствии с общей классификацией математических моделей они подразделяются на:

Функциональные;

Структурные;

Структурно-функциональные.

Применение в исследованиях на хозяйственном уровне структурных моделей обосновано взаимосвязью подсистем. Типичными в данном случае являются модели межотраслевых связей.

Функциональные модели широко применяются в сфере экономическогорегулирования. Типичными в данном случае являются модели поведения потребителей в условиях товарно-денежных отношений.

Один и тот же объект может быть представлен в виде и структурной, и функциональной модели одновременно. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на хозяйственном уровне – функциональная.

2. Различия между моделями дескриптивными и нормативными выявляются при рассмотрении их структуры и характера использования.

Дескриптивные модели дают ответ на вопрос: «Как это происходит?» или «Как это вероятнее всего может дальше развиваться?», то есть объясняют наблюдаемые факты или прогнозируют вероятность каких-либо фактов.

Цель дескриптивного подхода – эмпирическое выявление различных зависимостей в экономике. Это могут быть установление статистических закономерностей экономического поведения социальных групп, изучение вероятных путей развития каких-либо процессов при неизменных условиях или без внешних воздействий и другие исследования. Примером здесь может быть модель покупательского спроса, построенная на основе обработки статистических данных.

Нормативные модели признаны ответить на вопрос: «Как это должно быть?», то есть предполагают целенаправленную деятельность. Типичным примером является модель оптимального планирования.

Экономико-математическая модель может быть и дескриптивной, и нормативной. Так, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода, и нормативна при расчете сбалансированных вариантов развития экономики.

3. Признаки дескриптивных и нормативных моделей сочетаются, если нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Так, межотраслевая модель может включать функции покупательского спроса, отражающие поведение потребителей при изменении доходов.

Дескриптивный подход широко распространен в имитационном моделировании.

По характеру обнаружения причинно-следственных связей различают модели жестко детерминистские и модели, включающие элементы случайности и неопределенности. Необходимо различать неопределенность, основанную на законе теории вероятности, и неопределенность, выходящую за рамки применения этого закона. Второй тип неопределенности вызывает большие проблемы при моделировании.

4. По способам отражения фактора времени экономико-математические модели делятся на:

Статические;

Динамические.

В статических моделях все закономерности экономики относятся к одному моменту или периоду времени.

Динамические модели характеризуют изменения во времени.

По длительности периода времени различаются модели краткосрочного(до года), среднесрочного (до 5 лет), долгосрочного (5 лет и более) прогнозирования и планирования. Течение времени в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических явлений различаются по форме математических зависимостей.

Наиболее удобен для анализа и вычислений класс линейных моделей. Но существуют следующие зависимости в экономике, которые носят нелинейный характер:

Эффективность использования ресурсов при увеличении производства;

Изменение спроса и потребления населения при увеличении производства;

Изменение спроса и потребления населения при росте доходов и т. п.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые.

Модель должна содержать хотя бы одну эндогенную переменную, поэтому абсолютно открытых моделей не существует. Исключительно редки модели, не включающие экзогенных переменных (закрытые), – их построение требует полного абстрагирования от «среды», то есть серьезного огрубления реальных экономических систем, всегда имеющих внешние связи.

В основном модели различаются по степени открытости (закрытости).

Для моделей хозяйственного уровня важно деление на. агрегированные и детализированные.

В зависимости от того, включают ли хозяйственные модели пространственные факторы и условия или не включают, различают модели пространственныеиточечные.

С ростом достижений экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых оснований для их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.


Close