Диоксид углерода, оксид углерода, углекислота – все эти названия одного вещества, известного нам, как углекислый газ. Так какими же свойствами обладает этот газ, и каковы области его применения?

Углекислый газ и его физические свойства

Углекислый газ состоит из углерода и кислорода. Формула углекислого газа выглядит так – CO₂. В природе он образуется при сжигании или гниении органических веществ. В воздухе и минеральных источниках содержание газа также достаточно велико. кроме того люди и животные также выделяют диоксид углерода при выдыхании.

Рис. 1. Молекула углекислого газа.

Диоксид углерода является абсолютно бесцветным газом, его невозможно увидеть. Также он не имеет и запаха. Однако при его большой концентрации у человека может развиться гиперкапния, то есть удушье. Недостаток углекислого газа также может причинить проблемы со здоровьем. В результате недостатка это газа может развиться обратное состояние к удушью – гипокапния.

Если поместить углекислый газ в условия низкой температуры, то при -72 градусах он кристаллизуется и становится похож на снег. Поэтому углекислый газ в твердом состоянии называют «сухой снег».

Рис. 2. Сухой снег – углекислый газ.

Углекислый газ плотнее воздуха в 1,5 раза. Его плотность составляет 1,98 кг/м³ Химическая связь в молекуле углекислого газа ковалентная полярная. Полярной она является из-за того, что у кислорода больше значение электроотрицательности.

Важным понятием при изучении веществ является молекулярная и молярная масса. Молярная масса углекислого газа равна 44. Это число формируется из суммы относительных атомных масс атомов, входящих в состав молекулы. Значения относительных атомных масс берутся из таблицы Д.И. Менделеева и округляются до целых чисел. Соответственно, молярная масса CO₂ = 12+2*16.

Чтобы вычислить массовые доли элементов в углекислом газе необходимо следовать формулерасчета массовых долей каждого химического элемента в веществе.

n – число атомов или молекул.
Ar – относительная атомная масса химического элемента.
Mr – относительная молекулярная масса вещества.
Рассчитаем относительную молекулярную массу углекислого газа.

Mr(CO₂) = 14 + 16 * 2 = 44 w(C) = 1 * 12 / 44 = 0,27 или 27 % Так как в формулу углекислого газа входит два атома кислорода, то n = 2 w(O) = 2 * 16 / 44 = 0,73 или 73 %

Ответ: w(C) = 0,27 или 27 %; w(O) = 0,73 или 73 %

Химические и биологические свойства углекислого газа

Углекислый газ обладает кислотными свойствами, так как является кислотным оксидом, и при растворении в воде образует угольную кислоту:

CO₂+H₂O=H₂CO₃

Вступает в реакцию со щелочами, в результате чего образуются карбонаты и гидрокарбонаты. Этот газ не подвержен горению. В нем горят только некоторые активные металлы, например, магний.

При нагревании углекислый газ распадается на угарный газ и кислород:

2CO₃=2CO+O₃.

Как и другие кислотные оксиды, данный газ легко вступает в реакцию с другими оксидами:

СaO+Co₃=CaCO₃.

Углекислый газ входит в состав всех органических веществ. Круговорот этого газа в природе осуществляется с помощью продуцентов, консументов и редуцентов. В процессе жизнедеятельности человек вырабатывает примерно 1 кг углекислого газа в сутки. При вдохе мы получаем кислород, однако в этот момент в альвеолах образуется углекислый газ. В этот момент происходит обмен: кислород попадает в кровь, а углекислый газ выходит наружу.

Получение углекислого газа происходит при производстве алкоголя. Также этот газ является побочным продуктом при получении азота, кислорода и аргона. Применение углекислого газа необходимо в пищевой промышленности, где углекислый газ выступает в качестве консерванта, а также углекислый газ в виде жидкости содержится в огнетушителях.

Цели:

  • Расширить представления об истории открытия, свойствах и практическом применении углекислого газа.
  • Познакомить учащихся с лабораторными способами получения углекислого газа.
  • Продолжить формирование экспериментальных навыков учащихся.

Используемые приемы: “верные и неверные утверждения”, “зигзаг-1”, кластеры.

Лабораторное оборудование: лабораторный штатив, прибор для получения газов, стакан на 50 мл, кусочки мрамора, соляная кислота (1:2), известковая вода, зажим Мора.

I. Стадия вызова

На стадии вызова используется прием “верные и неверные утверждения”.

Утверждения

II. Стадия осмысления

1. Организация деятельности в рабочих группах, участники которых получают тексты по пяти основным темам “зигзага”:

  1. История открытия углекислого газа
  2. Углекислый газ в природе
  3. Получение углекислого газа
  4. Свойства углекислого газа
  5. Практическое применение углекислого газа

Идет первоначальное знакомство с текстом, первичное чтение.

2. Работа в экспертных группах.

В экспертные группы объединяются “специалисты” по отдельным вопросам. Их задача – внимательное чтение текста, выделение ключевых фраз и новых понятий либо использование кластеров и различных схем для графического изображения содержания текста (работа ведется индивидуально).

3. Отбор материала, его структурирование и дополнение (групповая работа)

4. Подготовка к трансляции текста в рабочих группах

  • 1-я группа экспертов составляет опорный конспект “История открытия углекислого газа”
  • 2-я группа экспертов составляет схему распространения углекислого газа в природе
  • 3-я группа экспертов составляет схему получения углекислого газа и рисунок установки для его получения
  • 4-я группа экспертов составляет классификацию свойств углекислого газа
  • 5-я группа экспертов составляет схему практического применения углекислого газа

5. Подготовка к презентации (плакат)

III. Стадия рефлексии

Возвращение в рабочие группы

  1. Трансляция в группе тем 1–5 последовательно. Сбор установки для получения углекислого газа. Получение углекислого газа и исследование его свойств.
  2. Обсуждение результатов эксперимента.
  3. Презентация отдельных тем.
  4. Возвращение к “верным и неверным утверждениям”. Проверка своих первоначальных предположений. Расстановка новых значков.

Это может выглядеть так:

Утверждения

1. Углекислый газ – это “дикий газ”.
2. В морях и океанах содержится в 60 раз больше углекислого газа, чем в земной атмосфере.
3. Природные источники углекислого газа называются мофетами.
4. В окрестностях Неаполя находится “Собачья пещера”, в которой не могут находиться собаки.
5. В лабораториях углекислый газ получают действием серной кислоты на куски мрамора.
6. Углекислый газ – это газ без цвета и запаха, легче воздуха, хорошо растворим в воде.
7. Твёрдый углекислый газ получил название “сухого льда”.
8. Известковая вода – это раствор гидроксида кальция в воде.

Тексты по пяти основным темам “зигзага”

1. История открытия углекислого газа

Углекислый газ был первым между всеми другими газами противопоставлен воздуху под названием “дикого газа” алхимиком XVI в. Вант Гельмонтом.

Открытием СО 2 было положено начало новой отрасли химии – пневматохимии (химии газов).

Шотландский химик Джозеф Блэк (1728 – 1799 г.г.) в 1754 году установил, что известковый минерал мрамор (карбонат кальция) при нагревании разлагается с выделением газа и образует негашеную известь (оксид кальция):

CaCO 3 CaO + CO 2
карбонат кальция оксид кальция углекислый газ

Выделяющийся газ можно было вновь соединить с оксидом кальция и вновь получить карбонат кальция:

CaO + CO 2 CaCO 3
оксид кальция углекислый газ карбонат кальция

Этот газ был идентичен открытому Ван Гельмонтом “дикому газу”, но Блэк дал ему новое название – “связанный воздух” – так как этот газ можно было связать и вновь получить твердую субстанцию, а также он обладал способностью притягиваться известковой водой (гидроксидом кальция) и вызывать её помутнение:


углекислый газ гидроксид кальция карбонат кальция вода

Несколько лет спустя Кавендиш обнаружил еще два характерных физических свойства углекислого газа – его высокую плотность и значительную растворимость в воде.

2. Углекислый газ в природе

Содержание углекислого газа в атмосфере относительно небольшое, всего 0,04–0,03% (по объему). CO 2 , сосредоточенный в атмосфере, имеет массу 2200 биллионов тонн.
В 60 раз больше углекислого газа содержится в растворенном виде в морях и океанах.
В течение каждого года из атмосферы извлекается примерно 1/50 часть всего содержащегося в ней CO 2 растительным покровом земного шара в процессе фотосинтеза, превращающего минеральные вещества в органические.
Основная масса углекислого газа в природе образуется в результате различных процессов разложения органических веществ. Углекислый газ выделяется при дыхании растений, животных, микроорганизмов. Непрерывно увеличивается количество углекислого газа, выделяемого различными производствами. Углекислый газ содержится в составе вулканических газов, выделяется он и из земли в вулканических местностях. Несколько столетий функционирует в качестве постоянно действующего генератора CO 2 “Собачья пещера” вблизи города Неаполя в Италии. Она знаменита тем, что собаки в ней не могут находиться, а человек может там пребывать в нормальном состоянии. Дело в том, что в этой пещере углекислый газ выделяется из земли, а так как он в 1,5 раза тяжелее воздуха, то располагается внизу, примерно на высоте роста собаки (0,5 м). В таком воздухе, где углекислого газа 14% , собаки (и другие животные, разумеется) дышать не могут, но стоящий на ногах взрослый человек не ощущает избытка углекислого газа в этой пещере. Такие же пещеры существуют в Йеллоустонском национальном парке (США).
Природные источники углекислого газа называются мофетами. Мофеты характерны для последней, поздней стадии затухания вулканов в которой находится, в частности, знаменитый вулкан Эльбрус. Поэтому там наблюдаются многочисленные выходы пробивающихся сквозь снега и льды горячих источников, насыщенных углекислым газом.
Вне земного шара оксид углерода (IV) обнаружен в атмосферах Марса и Венеры – планетах “земного типа”.

3. Получение углекислого газа

В промышленности углекислый газ получается главным образом как побочный продукт обжига известняка спиртового брожения и др.
В химических лабораториях либо пользуются готовыми баллонами с жидким углекислым газом, либо получают CO 2 в аппаратах Киппа или приборе для получения газов действием соляной кислоты на куски мрамора:

CaCO 3 + 2HCl CaCl 2 + CO 2 + H 2 O
карбонат кальция соляная кислота хлорид кальция углекислый газ вода

Пользоваться серной кислотой вместо соляной при этом нельзя, потому что тогда вместо растворимого в воде хлорида кальция получался бы гипс – сульфат кальция (CaSO 4) – соль, малорастворимая в воде. Отлагаясь на кусках мрамора, гипс крайне затрудняет доступ к ним кислоты и тем самым очень замедляет течение реакции.
Для получения углекислого газа:

  1. Закрепите в лапке лабораторного штатива прибор для получения газов
  2. Выньте из пробирки с отростком пробку с воронкой
  3. Поместите в насадку 2–3 кусочка мрамора величиной? горошины
  4. Вставьте пробку с воронкой в пробирку снова. Откройте зажим
  5. Прилейте в воронку (осторожно!) соляную кислоту (1:2) так, чтобы кислота слегка покрывала мрамор
  6. Наполните оксидом углерода (IV) химический стакан и закройте зажим.

4. Свойства углекислого газа

CO 2 – это бесцветный газ, не имеет запаха, тяжелее воздуха в 1,5 раза, с трудом смешивается с ним (по выражению Д.И. Менделеева, “тонет” в воздухе), что можно доказать следующим опытом: над стаканом, в котором закреплена горящая свечка, опрокидывают стакан, наполненный углекислым газом. Свечка мгновенно гаснет.
Оксид углерода (IV) обладает кислотными свойствами и при растворении этого газа в воде образуется угольная кислота. При пропускании CO 2 через подкрашенную лакмусом воду можно наблюдать изменение цвета индикатора с фиолетового на красный.
Хорошая растворимость углекислого газа в воде делает невозможным собирание его методом “вытеснения воды”.
Качественной реакцией на содержание углекислого газа в воздухе является пропускание газа через разбавленный раствор гидроксида кальция (известковую воду). Углекислый газ вызывает образование в этом растворе нерастворимого карбоната кальция, в результате чего раствор становится мутным:

CO 2 + Ca(OH) 2 CaCO 3 + H 2 O
углекислый газ гидроксид кальция карбонат кальция вода

При добавлении избыточного количества CO2 мутный раствор снова становится прозрачным из-за превращения нерастворимого карбоната в растворимый гидрокарбонат кальция:

CaCO 3 + H 2 O + CO 2 Ca(HCO 3) 2
карбонат кальция вода углекислый газ гидрокарбонат кальция

5. Практическое применение углекислого газа

Прессованный твердый углекислый газ получил название “сухого льда”.
Твердый CO 2 скорее похож на спрессованный плотный снег, по твердости напоминающий мел. Температура “сухого льда” –78 о С. Сухой лед, в отличие от водяного льда, плотный. Он тонет в воде, резко охлаждая её. Горящий бензин можно быстро потушить, бросив в пламя несколько кусочков сухого льда.
Главное применение сухого льда – хранение и перевозка продуктов питания: рыбы, мяса, мороженого и др. Ценность сухого льда заключается не только в его охлаждающем действии, но и в том, что продукты в углекислом газе не плесневеют и не гниют.
Сухим льдом испытывают в лабораториях детали, приборы, механизмы, которые будут служить в условиях пониженных температур. С помощью сухого льда испытывают морозоустойчивость резиновых покрышек автомобилей.
Углекислый газ применяют для газирования фруктовых и минеральных вод, а в медицине – для углекислотных ванн.
Жидкий углекислый газ используют в углекислотных огнетушителях, огнетушительных системах самолетов и кораблей и в пожарных углекислотных машинах. Он особенно эффективен в тех случаях, когда вода непригодна, например, при тушении загоревшихся огнеопасных жидкостей или при наличии в помещении невыключенной электропроводки или уникального оборудования, которое от воды может пострадать.
Во многих случаях CO 2 используют не в готовом виде, а получают в процессе использования, например, хлебопекарных порошков, содержащих смесь бикарбоната натрия с кислым виннокислым калием. При смешивании таких порошков с тестом соли растворяются и возникает реакция с выделением CO 2 . В результате тесто всходит, наполняясь пузырьками углекислого газа, и выпеченный из него продукт получается мягким и вкусным.

Литература

  1. Перемена // Международный журнал о развитии мышления через чтение и письмо. – 2000. – №№ 1, 2.
  2. Современный студент в поле информации и коммуникации: Учебно-методическое пособие. – СПб.: PETROC, 2000.
  3. Загашев И.О., Заир-Бек С.И. Критическое мышление: технология развития. – СПб.: Издательство “Альянс “Дельта”, 2003.

Углекислый газ

Оксид углерода(IV) (углекислый газ, диоксид углерода, двуокись углерода, угольный ангидрид, углекислота ) — CO 2 , бесцветный газ, без запаха, со слегка кисловатым вкусом.
Концентрация углекислого газа в атмосфере Земли составляет в среднем 0,038 %.
Он не пригоден для поддержания жизни. Однако именно им «питаются» растения, превращая его в органические вещества. К тому же он является своеобразным «одеялом» Земли. Если этот газ вдруг исчезнет из атмосферы, на Земле станет гораздо прохладнее, а дожди практически исчезнут.

«Одеяло Земли»

Углекислый газ (двуокись углерода, диоксид углерода, CO 2 ) формируется при соединении двух элементов: углерода и кислорода. Он образуется в процессе сжигания угля или углеводородных соединений, при ферментации жидкостей, а также как продукт дыхания людей и животных. В небольших количествах он содержится и в атмосфере, откуда он ассимилируется растениями, которые, в свою очередь, производят кислород.
Углекислый газ бесцветен и тяжелее воздуха. Замерзает при температуре −78.5°C с образованием снега, состоящего из двуокиси углерода. В виде водного раствора он образует угольную кислоту, однако она не обладает достаточной стабильностью для того, чтобы ее можно было легко изолировать.
Углекислый газ — это «одеяло» Земли . Он легко пропускает ультрафиолетовые лучи, которые обогревают нашу планету, и отражает инфракрасные, излучаемые с ее поверхности в космическое пространство. И если вдруг углекислый газ исчезнет из атмосферы, то это в первую очередь скажется на климате. На Земле станет гораздо прохладнее, дожди будут выпадать очень редко. К чему это в конце концов приведет, догадаться нетрудно.
Правда, такая катастрофа нам пока еще не грозит. Скорее даже, наоборот. Сжигание органических веществ: нефти, угля, природного газа, древесины - постепенно увеличивает содержание углекислого газа в атмосфере. Значит, со временем надо ждать значительного потепления и увлажнения земного климата. Кстати, старожилы считают, что уже сейчас заметно теплее, чем было во времена их молодости...
Двуокись углерода выпускается жидкая низкотемпературная, жидкая высокого давления и газообразная . Ее получают из отбросных газов производств аммиака, спиртов, а также на базе специального сжигания топлива и других производств. Газообразная двуокись углерода - газ без цвета и запаха при температуре 20°С и давлении 101,3 кПа (760 мм рт. ст.), плотность - 1,839 кг/м 3 . Жидкая двуокись углерода - просто бесцветная жидкость без запаха.
Углекислый газ
нетоксичен и невзрывоопасен. При концентрациях более 5% (92 г/м 3) двуокись углерода оказывает вредное влияние на здоровье человека — она тяжелее воздуха и может накапливаться в слабо проветриваемых помещениях у пола. При этом снижается объемная доля кислорода в воздухе, что может вызвать явление кислородной недостаточности и удушья.

Получение двуокиси углерода

В промышленности углекислый газ получают из печных газов, из продуктов разложения природных карбонатов (известняк, доломит). Смесь газов промывают раствором карбоната калия, который поглощает углекислый газ, переходя в гидрокарбонат. Раствор гидрокарбоната при нагревании разлагается, высвобождая углекислоту. При промышленном производстве газ закачивается в баллоны.
В лабораторных условиях небольшие количества получают взаимодействием карбонатов и гидрокарбонатов с кислотами, например мрамора с соляной кислотой.

Применение

В пищевой промышленности диоксид углерода используется как консервант и обозначается на упаковке под кодом Е290
Жидкая углекислота
(жидкая пищевая углекислота) — сжиженный углекислый газ, хранящийся под высоким давлением (~ 65-70 Атм). Бесцветная жидкость. При выпуске жидкой углекислоты из баллона в атмосферу часть её испаряется, а другая часть образует хлопья сухого льда.
Баллоны с жидкой углекислотой
широко применяются в качестве огнетушителей и для производства газированной воды и лимонада.
Углекислый газ
используется в качестве защитной среды при сварке проволокой, но при высоких температурах происходит его диссоциация с выделением кислорода. Выделяющийся кислород окисляет металл. В связи с этим приходится в сварочную проволоку вводить раскислители, такие как марганец и кремний. Другим следствием влияния кислорода, также связанного с окислением, является резкое снижение поверхностного натяжения, что приводит, среди прочего, к более интенсивному разбрызгиванию металла, чем при сварке в аргоне или гелии.
Углекислота в баллончиках
применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.
Твёрдая углекислота — сухой лёд
— используется в ледниках. Жидкая углекислота используется в качестве хладагента и рабочего тела в теплоэнергетических установках (в холодильниках, морозильниках, солнечных электрогенераторах и т.д.).

«Сухой лед» и прочие полезные свойства диоксида углерода

В повседневной практике углекислый газ используется достаточно широко. Например, газированная вода с добавками ароматных эссенций - прекрасный освежающий напиток. В пищевой промышленности диоксид углерода используется и как консервант — он обозначается на упаковке под кодом Е290 , а также в качестве разрыхлителя теста.
Углекислотными огнетушителями пользуются при пожарах. Биохимики нашли, что удобрение... воздуха углекислым газом весьма эффективное средство для увеличения урожайности различных культур. Пожалуй, такое удобрение имеет единственный, но существенный недостаток: применять его можно только в оранжереях. На заводах, производящих диоксид углерода, сжиженный газ расфасовывают в стальные баллоны и отправляют потребителям. Если открыть вентиль, то из отверстия с шипением вырывается... снег. Что за чудо?
Все объясняется просто. Работа, затраченная на сжатие газа, оказывается значительно меньше той, которая требуется на его расширение. И чтобы как-то компенсировать возникающий дефицит, углекислый газ резко охлаждается, превращаясь в «сухой лед». Он широко используется для сохранения пищевых продуктов и перед обычным льдом имеет значительные преимущества: во-первых, «хладопроизводительность» его вдвое выше на единицу веса; во-вторых, он испаряется без остатка.
Углекислый газ используется в качестве активной среды при сварке проволокой , так как при температуре дуги углекислота разлагается на угарный газ СО и кислород, который, в свою очередь, и входит во взаимодействие с жидким металлом, окисляя его.
Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Показатели качества двуокиси углерода ГОСТ 8050-85

Наименование показателя

В таблице представлены теплофизические свойства углекислого газа CO 2 в зависимости от температуры и давления. Свойства в таблице указаны при температуре от 273 до 1273 К и давлении от 1 до 100 атм.

Рассмотрим такое важное свойство углекислого газа, как .
Плотность углекислого газа равна 1,913 кг/м 3 при нормальных условиях (при н.у.). По данным таблицы видно, что плотность углекислого газа существенно зависит от температуры и давления — при росте давления плотность CO 2 значительно увеличивается, а при повышении температуры газа — снижается. Так, при нагревании на 1000 градусов плотность углекислого газа уменьшается в 4,7 раза.

Однако, при увеличении давления углекислого газа, его плотность начинает расти, причем значительно сильнее, чем снижается при нагреве. Например при давлении и температуре 0°С плотность углекислого газа вырастает уже до значения 20,46 кг/м 3 .

Необходимо отметить, что рост давления газа приводит к пропорциональному увеличению значения его плотности, то есть при 10 атм. удельный вес углекислого газа в 10 раз больше, чем при нормальном атмосферном давлении.

В таблице приведены следующие теплофизические свойства углекислого газа:

  • плотность углекислого газа в кг/м 3 ;
  • удельная теплоемкость, кДж/(кг·град);
  • , Вт/(м·град);
  • динамическая вязкость, Па·с;
  • температуропроводность, м 2 /с;
  • кинематическая вязкость, м 2 /с;
  • число Прандтля.

Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплофизические свойства углекислого газа CO 2 при атмосферном давлении

В таблице даны теплофизические свойства углекислого газа CO 2 в зависимости от температуры (в интервале от -75 до 1500°С) при атмосферном давлении. Даны следующие теплофизические свойства углекислого газа:

  • , Па·с;
  • коэффициент теплопроводности, Вт/(м·град);
  • число Прандтля.

По данным таблицы видно, что с ростом температуры теплопроводность и динамическая вязкость углекислого газа также увеличиваются. Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 2 . Не забудьте разделить на 100!

Теплопроводность углекислого газа CO 2 в зависимости от температуры и давления

теплопроводности углекислого газа CO 2 в интервале температуры от 220 до 1400 К и при давлении от 1 до 600 атм. Данные выше черты в таблице относятся к жидкому CO 2 .

Следует отметить, что теплопроводность сжиженного углекислого газа при увеличении его температуры снижается , а при увеличении давления — растет. Углекислый газ (в газовый фазе) становится более теплопроводным, как при увеличении температуры, так и при росте его давления.

Теплопроводность в таблице дана в размерности Вт/(м·град). Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

Теплопроводность углекислого газа CO 2 в критической области

В таблице представлены значения теплопроводности углекислого газа CO 2 в критической области в интервале температуры от 30 до 50°С и при давлении .
Примечание: будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000! Теплопроводность в таблице указана в Вт/(м·град).

Теплопроводность диссоциированного углекислого газа CO 2 при высоких температурах

В таблице представлены значения теплопроводности диссоциированного углекислого газа CO 2 в интервале температуры от 1600 до 4000 К и при давлении от 0,01 до 100 атм. Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!

В таблице представлены значения теплопроводности жидкого углекислого газа CO 2 на линии насыщения в зависимости от температуры.
Примечание: Будьте внимательны! Теплопроводность в таблице указана в степени 10 3 . Не забудьте разделить на 1000!
Теплопроводность в таблице указана в Вт/(м·град).

Применение углекислого газа в сварочной области является очень распространенной. Это один из основных вариантов, которые применяются для различных видов соединения металла. Физические свойства углекислого газа определяют его как универсальную субстанцию для газовой сварки, соединения газовой и электродуговой и так далее. Это относительно недорогое сырье, которое используется здесь на протяжении многих лет. Есть более эффективные варианты, но именно углекислота применяется чаще всего. Она находит применение как для обучения, так и для выполнения самых простых процедур.

Углекислота еще носит название диоксид углерода. Вещество не обладает запахом и бесцветно в обыкновенном состоянии. При нормальном атмосферном давлении, углекислота не состоит в жидком состоянии и из твердого сразу переходит в газообразное.

Область применения углекислого газа

Химическое вещество используется не только для сварки. Физические свойства углекислого газа позволяют применять его как разрыхлитель или консервант в пищевой промышленности. Во многих системах пожаротушения, в частности в ручных огнетушителях. Его применяют для обеспечения питания аквариумных растений. Практически все газированные напитки содержат углекислый газ.

В сварочной сфере применение чистой углекислоты является не совсем безопасным для металла. Дело в том, что при воздействии высокой температуры он распадается и из него выделяется кислород. В свою очередь, кислород является опасным для сварочной ванны и чтобы ликвидировать его негативное воздействие, применяют разнообразные раскислители, такие как кремний и марганец.

Применение углекислоты встречается еще и в баллонах для пневматических пистолетов и винтовок. Как и в сварочных баллонах, углекислота здесь хранится в сжиженном состоянии под давлением.

Химическая формула

Химические свойства углекислого газа, а также его другие характеристики, напрямую зависят от элементов, которые входят в состав формулы. Формула углекислого газа в химии имеет вид CO 2 . Это означает, что углекислота содержит в себе один атом углерода и два атома кислорода.

Химические и физические свойства

Рассмотрев, как обозначается химических газ в химии, стоит более внимательно рассмотреть его свойства. Физические свойства углекислого газа проявляются в различных параметрах. Плотность углекислого газа при стандартных атмосферных условиях составляет 1,98 кг/м 3 . Это делает его в 1,5 раза тяжелее, чем воздух в атмосфере. Диоксид углерода не имеет запаха и цвета. Если его подвергнуть сильному охлаждению, то он начинает кристаллизоваться в так называемый «сухой лед». Температура сублимации достигает -78 градусов Цельсия.

Химические свойства углекислого газа определяют его к кислотным оксидам, так как он может образовывать угольную кислоту, когда его растворяют в воде. При взаимодействии с щелочами, вещество начинает образовывать гидрокарбонаты и карбонаты. С некоторыми веществами, такими как фенол, диоксид углерода вступает в реакцию электрофильного замещения. С магнийорганическими вещество вступает в реакцию нуклеофильного присоединения. Использование углекислоты в огнетушителях обусловлено тем, что она не поддерживает процесс горения. Использование в сварке обусловлено тем, что в веществе горят некоторые активные металлы.

Преимущества

  • Использование углекислого газа является относительно недорогим, так как цена на данное вещество достаточно низкая, если сравнивать с другими газами;
  • Это очень распространенное вещество, найти которое можно во многих местах;
  • Углекислый газ удобен в хранении и не требует сверхсложных мер безопасности;
  • Газ хорошо справляется с теми обязанностями, для которых он предназначается.

Недостатки

  • Во время использования на металле могут образовываться оксиды, которые выделяет вещество во время нагревания;
  • Для нормальной работы нужно использовать дополнительные расходные материалы, которые бы помогли ликвидировать негативное воздействие оксидов;
  • Существуют более эффективные газы, применяемые в сварочной сфере.

Применение углекислого газа при сварке

Данное вещество применяется в области сваривания металлических изделий в качестве . Он применяется как для автоматических, так и для . Зачастую его используют не в чистом виде а вместе с аргоном или кислородом в газовой смеси. В производственной сфере существует несколько вариантов снабжения постов. Среди них выделяют следующие методы:

  • Поставка из баллона. Это очень удобно, когда речь идет об относительно небольших объемах вещества. Это обеспечивает мобильность, так как не всегда имеется возможность создать трубопровод к посту.
  • Транспортная емкость для углекислоты. Это также отличный вариант для потребления вещества в небольших баллонах. Она обеспечивает поставку большего количества газа, чем в баллонах, но менее удобна в транспортировке.
  • Стационарный сосуд накопитель. Он применяется для тех, кто использует углекислоту в больших объемах. Их используют при отсутствии на предприятии автономной станции.
  • Автономная станция. Это наиболее широкий по объему метод поставки, так как может обслуживать пост практически для любых процедур, вне зависимости от объемов. Таким образом, пост получает вещество непосредственно с места его производства.

Автономная станция представляет собой специальный цех на предприятии, где получают диоксид углерода. Он может работать как исключительно для собственных нужд, так и на поставку другим цехам и организациям. Для обеспечения рабочих точек предприятия, газ поставляет по трубопроводам. В то время, когда на предприятии имеется необходимость в запасании углекислоты, ее перемещают в специальные накопители.

Меры безопасности

Хранение и использование вещества является относительно безопасным. Но для того, чтобы исключить вероятности несчастных случаев, следует придерживаться основных правил:

  • Несмотря на то, что углекислота не отличается взрывоопасностью и токсичностью, если ее концентрация будет выше 5%, то человек будет чувствовать удушье и кислородную недостаточность. Не следует допускать утечки и хранения всего в закрытом не проветриваемом помещении.
  • Если понизить давление, то жидкая углекислота превращается в газообразное состояние. В это время ее температура может составлять -78 градусов Цельсия. Это вредно для слизистых оболочек организма. Также это приводит к обморожению кожи
  • Осмотр больших емкостей для хранения углекислоты следует проводить с использованием шлангового противогаза. Цистерна должна быть отогрета до температуры окружающей среды и быть хорошо проветренной.

Заключение

Физические свойства являются не единственным показателем, по которому подбирается газ для сварки. Совокупность всех параметров обеспечивает данному веществу уверенные позиции на современном рынке расходных материалов. Среди самых простых процедур это незаменимый газ, с которым сталкивался практически каждый профессиональный и начинающий сварщик.