ДИАГРАММА ФАЗОВАЯ, графическое изображение условий (температуры, давления, химического состава и др.), при которых в равновесной термодинамической системе, состоящей из одного или нескольких заданных веществ (независимых компонентов системы), существуют однородные состояния вещества (фазы) с различающимися физико-химическими свойствами. Как эквивалентный термину «диаграмма фазовая» используется термин «диаграмма состояния» (главным образом в России и Германии). Однако диаграммой состояния нередко, особенно в англоязычной литературе, называют также графики, не отражающие непосредственно фазовые равновесия в системе.

Фазы представлены на диаграмме фазовой в виде областей, ограниченных кривыми или поверхностями, расположенными в пространстве независимых термодинамических переменных. Обычно это температура Т, давление Р, мольные доли компонентов системы х, функции этих и других переменных, такие как отношения количеств или концентраций компонентов, плотности р или мольные объёмы V m , парциальные давления или химические потенциалы веществ μ. При отсутствии внешних силовых полей число координатных осей полной диаграммы фазовой открытой системы с с компонентами равно с+2. Для изображения многомерных диаграмм фазовых на плоскости пользуются их сечениями и проекциями, построенными при определённых ограничениях, наложенных на некоторые из независимых переменных, часто в сочетании со специально выбранными системами координат (координаты Дженике, треугольники Гиббса - Розебома и др.). Диаграмма фазовая показывает: какие индивидуальные вещества, жидкие, твёрдые или газовые растворы образуют заданные компоненты системы; при каких условиях такие фазы и их гетерогенные смеси являются термодинамически устойчивыми; при каких значениях термодинамических переменных в системе происходят фазовые превращения веществ. Диаграммы фазовые, содержащие данные о химическом составе фаз, позволяют также определить относительные количества сосуществующих фаз. Такие сведения необходимы для решения многих научных и практических задач и широко используются в химии, металлургии, материаловедении, геохимии и других областях науки и технологии.

Координатами диаграммы фазовой могут быть термодинамические переменные двух видов - параметры термического, механического и химического равновесий Т, Р, μ, имеющие одинаковые значения во всех частях равновесной системы, или (обычно различающиеся в разных фазах) обобщённые плотности экстенсивных свойств, такие как х, р, V m и другие свойства, равные отношениям экстенсивных величин к количеству, массе или объёму вещества в системе. В связи с этим различают три типа диаграмм фазовых. Диаграммы одного и того же типа являются изоморфными: они имеют одинаковые топологического особенности независимо от числа компонентов и значений конкретных переменных на координатных осях.

На диаграммах фазовых типа (Т, Р), (Т, μ i), (μ i , μ j) и им подобных, с интенсивными параметрами равновесия, представлены только фазовые области и разделяющие их линии (поверхности), которые обозначают границы стабильности отдельных фаз. Точки пересечения линий соответствуют условиям равновесия более двух фаз. Так, тройная точка на (Т, Р)-диаграмме однокомпонентной системы указывает на условия устойчивого сосуществования трёх фаз.

При наличии оси концентраций, мольных свойств, плотностей, как, например, на диаграмме фазоваой (Т, х), (Р, х), (μ i , х), (Т, р), области стабильности фаз разделены другими областями, которые отображают существование гетерогенных смесей равновесных фаз. Диаграмма фазовая такого типа для двухкомпонентной системы кадмий - цинк показана на рисунке. Диаграмма этой двухкомпонентной системы имеет две координатные оси, а не четыре, как того требует приведённое выше выражение с + 2, поскольку при её построении использовано условие постоянства Р и два независимых переменных количества Cd и Zn заменены одной концентрацией x Zn (x Cd = 1 - x Zn). Верхняя часть рисунка представляет собой диаграмму равновесия жидкость - пар. Ломаная кривая, соединяющая точки плавления чистых компонентов, называется линией ликвидуса, она показывает «диаграмму плавкости» системы. Прямые (коноды), проведённые в гетерогенной области такой диаграммы фазовой между границами двух сосуществующих фаз параллельно оси концентраций (смотри эвтектическую коноду на рисунке), позволяют при любом заданном компонентном составе системы определить количества сосуществующих фаз («правило рычага»).

В диаграмме фазовой третьего типа - (x i , x j), (x i ,р), (мольная энтропия, х), (мольная энтальпия, х) и др. - координатами являются только обобщённые плотности экстенсивных термодинамических свойств. На этих диаграммах также представлены гетерогенные смеси фаз и коноды, но, в отличие от двух других типов диаграмм фазовых, в данном случае состояние гетерогенных смесей отображается плоской или объёмной фигурой (треугольником, тетраэдром) и есть возможность определять количественный фазовый состав системы при равновесии трёх и более фаз («правило центра тяжести» фигуры).

Диаграммы фазовые изучают экспериментально и рассчитывают методами химической термодинамики по данным о термодинамических свойствах составляющих систему веществ. Теоретические основания для построения диаграмм фазовых даны Дж. Гиббсом в 1880-х годах. Им же сформулировано «правило фаз» (смотри Гиббса правило фаз), широко применяющееся при экспериментальном изучении фазовых равновесий и диаграмм фазовых: при фиксированных Т и Р число равновесно сосуществующих фаз f не может превышать число компонентов системы более чем на два, f ≤ с + 2.

Лит.: Палатник Л. С., Ландау А. И. Фазовые равновесия в многокомпонентных системах. Хар., 1961; Кауфман Л., Бернстейн Х. Расчет диаграмм состояния [металлических систем] с помощью ЭВМ. М., 1972; Физическое металловедение / Под редакцией Р. Кана, П. Хаазена. М., 1987. Т. 2.

Следующей по счету мы разберем диаграмму фазового равновесия с ограниченной растворимостью компонентов в твердом состоянии и эвтектическим превращением . В эвтектических системах введение первых количеств одного из компонентов к другому вызывает понижение температуры сплава, так что кривая ликвидус проходит через температурный минимум, называемый эвтектической точкой. Жидкость обладает растворимостью в любых пропорциях, а растворимость в твердом состоянии ограничена.

В результате эвтектического превращения образуются кристаллы очень мелкого размера, которые не различимы в оптическом микроскопе. По этой причине разные фазовые составляющие, которые образуются в результате превращения, объединяют в одну структурную составляющую.

Пример фазовой диаграммы с эвтектическим превращением показан на рисунке. α и β-фазы - это твердые растворы. К этим растворам применима фраза «ограниченные твердые растворы», по причине того, что область стабильности каждого из растворов простирается только на часть диаграммы. Еще эти фазы можно назвать первичными твердыми растворами, поскольку соответствующие им области начинаются от краев диаграммы (внутрь её), а не ограничены с двух сторон где-то в средней части диаграммы. Фазы могут иметь одинаковое кристаллическое строение, но это не обязательно; каждая фаза имеет строение того компонента, с которым она граничит. На строение твердых растворов не накладывается никаких ограничений, они могут быть как растворами замещения, так и растворами внедрения.

На рисунке обозначены три двухфазные области: L + α, L + β и α+β. Очевидно, что области L + α и L + β во всех смыслах эквиваленты области L + α диаграммы с неограниченной растворимостью компонентов, которую мы разбирали в первой части данной статьи. Эти области можно рассматривать как составленные из конод, соединяющие при каждой данной температуре составы жидкой и твердой фазы, которые представлены линиями солидус и ликвидус. Подобным же образом область α+β рассматривается, как составленная из конод, соединяющих при каждой температуре состав фазы α на α-кривой растворимости с соответствующим составом фазы β на β-кривой растворимости.

Три двухфазные области соединяются между собой по коноде (a - e - b ), общей для всех них, и соединяющей составы трех сопряженных фаз, сосуществующих при эвтектической температуре, то есть α (точка a ), жидкости (точка e ) и β (точка b ). Эта конода также называется эвтектической линией или эвтектической горизонталью, или изотермической реакцией. Точка e , представляющая единственную жидкость, которая может сосуществовать одновременно с обеими твердыми фазами, называют эвтектической точкой, то есть точкой-составом сплава с самой низкой температурой плавления.

Эвтектическое превращение, которое происходит с твердым раствором, называют эвтектоидным превращением.

В третьей части статьи продолжим обзор базовых диаграмм фазового равновесия.

Рис. 2.3. Диаграмма состояния многокомпонентного газа.

В отличие от чистого вещества для многокомпонентных систем изменение объема в двухфазной области сопровождается и изменением давления (рис. 2.3, о). Для полного испарения жидкости необходимо непрерывно понижать давление и, наоборот, для полной конденсации газа надо непрерывно повышать давление. Поэтому давление точки начала парообразования для многокомпонентной системы выше давления точки начала конденсации и при перестроении диаграммы фазовых состояний в координатах

давление - температура кривые точек начала испарения и точек росы не совпадают. По сравнению с фазовой диа­граммой чистого вещества диаграмма в этих координатах имеет вид петли (рис. 2.3,6). Кривая точек начала паро­образования, являющаяся границей, разделяющей области жидкого и двухфазного состояний вещества, и кривая точек росы, отделяющая двухфазную область от области парообразования, соединяются в критической точке С. В данном случае критическая точка не является точкой максимального давления и температуры, при которых одно­временно могут существовать две фазы, но, как и в случае чистого вещества в критической точке плотность и со­став фаз одинаковы.

Для многокомпонентной системы точка М с максимальной температурой, при которой возможно двухфаз­ное состояние, называется крикондентермой, а точка N с соответствующим давлением - криконденбарой. Между этими точками и критической точкой существуют две области, в которых поведение смеси отличается от поведе­ния чистого вещества. При изотермическом сжатии, например при температуре Г, по линии ЕА, смесь после пере­сечения в точке Е линии точек росы частично конденсируется и переходит в двухфазное состояние. С дальнейшим повышением давления доля жидкой фазы возрастает, но лишь для определенного давления, соответствующего точке Д. Последующее увеличение давления от точки Д до точки В ведет к уменьшению доли жидкой фазы, а затем смесь снова переходит в парообразное состояние. Давление в точке Д, при котором образуется максимальное ко­личество жидкой фазы, называется давлением максимальной конденсации.



Аналогичные явления наблюдаются и при изобарном нагревании жидкости по линии ЛНГБ. Первоначаль­но смесь находится в однофазном жидком состоянии. После пересечения линии точек начала парообразования в точке Л в смеси появляется паровая фаза, количество которой растет до точки Н. Последующее повышение темпе­ратуры ведет к уменьшению объема паровой фазы вплоть до возвращения вещества в жидкое состояние в точке Г.

Области, в которых конденсация и испарение происходят в направлении, обратном фазовым превращени­ям чистого вещества, получили название ретроградных областей (на рис. 2.3,6 они заштрихованы). Явления, про­исходящие в этих областях, называют ретроградным (обратным) испарением и ретроградной (обратной) конденса­цией. Эти явления широко используются в процессах внутрипромысловой подготовки газа для выбора условий, при которых обеспечивается максимальное отделение газового конденсата.

Петлеобразная форма диаграммы фазовых состояний (рис. 2.3, б) характерна для всех многокомпонентных смесей, но форма петли, положение критической точки и ретроградных областей зависят от состава смеси. Если состав пластовой смеси таков, что крикондентерма располагается левее изотермы, соответствующей пластовой температуре (линии ft]), то по мере снижения давления при разработке месторождения эта смесь будет находить­ся только в однофазном газовом состоянии. Смеси углеводородов такого состава образуют газовые месторожде­ния. Если состав смеси таков, что пластовая температура находится между критической температурой и темпера­турой крикондентермы (линия АТ^), то такие углеводородные смеси образуют газоконденсатные месторождения. В процессе снижения давления при пластовой температуре из них будет выделяться жидкая фаза - конденсат.

Для нефтяных месторождений критическая точка располагается правее изотермы пластовой температуры (линия GTi). Если точка G с координатами, соответствующими начальному пластовому давлению и пластовой температуре, расположена выше линии начала парообразования, то нефть находится в однофазном жидком со­стоянии и недонасыщена газом. Только при снижении давления ниже давления насыщения (точка D) из нефти на­чинает выделяться газовая фаза Нефтяные месторождения, состав углеводородной смеси которых таков, что на­чальное пластовое давление (точка К) ниже давления насыщения, имеют газовую шапку, которая представляет со­бой скопившуюся в верхней части залежи газовую фазу.

Таким образом, выражение (16.14) должно определять истинное равновесное давление пара при заданной температуре. Так как и являются функциями от давления и температуры соответствующих фаз, (16.14) является уравнением линии перехода между двумя фазами. Таким образом уравнение линии перехода, например кривой давления пара или кривой плавления, представляет собой соотношение между и Поэтому наилучшим способом изображения различных фаз является -диаграмма, На фиг. 29 показана обычная -диаграмма. Кривая давления пара разделяет газовую и жидкую фазы, а кривая плавления - жидкую и твердую фазы.

Кривая давления пара оканчивается в критической точке К. При температурах выше критической газ и жидкость непрерывно переходят друг в друга без поглощения или отдачи тепла и без скачкообразного изменения плотности, что имеет место в случае, например, испарения. Неоднократно делались попытки найти аналогичную «критическую» точку в конце кривой плавления, но даже при очень высоких давлениях такой точки не обнаружено.

При понижении температуры давление пара уменьшается. Но при этом уменьшается и давление, при котором кристаллизуется жидкость (давление плавления). При определенной температуре давление пара становится равным давлению плавления кристалла (точка на фиг. 29). При этих температуре и давлении газовая, жидкая и твердая (кристаллическая) фазы могут сушествовать в равновесии между собой; называется тройной точкой. Ниже этих температуры и давления газ может прямо переходить в твердую фазу, а твердая фаза возгоняться (сублимироваться); соответствующая линия перехода называется иногда кривой сублимации (или кривой возгонки).

Фиг. 29. -диаграмма.

Обычно температура плавления повышается с увеличением давления, поэтому кривая плавления на диаграмме наклонена вправо. Однако в некоторых случаях температура плавления понижается с увеличением давления, например для воды между О и 2000 атм (фиг. 30). Точка плавления воды, т. е. температура плавления при давлении 1 атм, по определению равна 0° С. Тройная точка лежит немного выше; ее координаты 0,007 С и 4,6 мм рт. ст.

На примере воды видно, что фазовая диаграмма не всегда имеет такой простой характер, как показано На фиг. 29. Вода может существовать в виде нескольких твердых фаз, которые различаются своей кристаллической структурой. Фазовая диаграмма гелия (фиг. 31) стоит особняком и отличается от других диаграмм отсутствием кривой сублимации: жидкая зона распространяется до абсолютного нуля. Вместо тройной точки мы имеем в этом случае так называемую -кривую, которая разделяет две различные зоны, обычно обозначаемые римскими цифрами

Фиг. 30. -диаграмма воды.

Переход между двумя жидмими фазами I и II проявляется не в скачкообразном изменении плотности и не в наличии теплоты перехода, как это имеет место при обычных переходах (плавлении, конденсации и сублимации), а в резком изменении коэффициента теплового расширения, сжимаемости и удельной теплоемкости, т. е. производных основных термодинамических величин. Эти переходы часто называют переходами второго рода

Из уравнения (16.14) линии перехода двух фаз мы можем вывести соотношение между различными

характеристическими термодинамическими величинами линии перехода. Рассмотрим точку на линии перехода (фиг. 32); в этой точке Если теперь увеличить температуру на и давление на таким образом, чтобы остаться на линии перехода, мы придем в точку в которой обе фазы снова находятся в равновесии.

Фиг. -диаграмма гелия.

Таким образом, если есть увеличение термодинамического потенциала для фазы 1 и - его увеличение для фазы 2, то мы имеем

Сравнивая с (16.14), мы видим, что

где есть малое увеличение термодинамического потенциала фазы 1 или 2 вдоль линии перехода.

Согласно § 13, термодинамический потенциал равен свободной энтальпии одного киломоля, откуда, учитывая (13.3), мы получаем

где - малые приращения вдоль линии перехода и - энтропии и объемы одного киломоля каждой фазы вдоль линии перехода. Выражение (16.17) можно переписать в виде

Фиг. 32. К выводу уравнения Клайперона-Клаузиуса.

Так как во время перехода температура остается постоянной, разность энтропий между двумя фазами равна теплоте перехода, деленной на температуру, откуда, наконец, получаем так называемое уравнение Клаузиуса - Клайперона

Из этого уравнения вытекает ряд важных следствий. Если мы, например, повышаем температуру и приближаемся к критической точке вдоль кривой давления пара, то разность плотностей пара и жидкости, а следовательно, разность удельных объемов в знаменателе уравнения (16.19) непрерывно уменьшается. Но крутизна кривой давления пара на p-T-диаграмме, как показывает опыт, не становится бесконечной в критической точке. Следовательно, на основании (16.19) мы можем сделать вывод, что по мере приближения к критической точке теплота испарения непрерывно уменьшается и, наконец, становится равной нулю. Это согласуется с опытными данными.

Из уравнения (16.19) следует также, что величина положительна, если молярный объем второй фазы больше объема первой фазы и если для осуществления перехода из первой фазы во вторую к системе необходимо подводить тепло. Это также согласуется с формой различных линий перехода, полученных экспериментально. Следует отметить, что крутизна кривой

плавления воды отрицательна, несмотря на то что величина положительна. Уравнение (16.19) показывает, что в этом случае объем второй фазы (воды) должен быть меньше объема первой фазы (льда), тогда как обычно твердая фаза имеет меньший молярный объем. Эти особые свойства воды уже давно известны из опыта.


Рассмотрим P T X диаграммы для бинарных систем. Интенсивные работы по изучению P T X диаграмм состояния показали, что использование высоких давлений (десятки и сотни тысяч атмосфер) в ряде случаев приводит к изменению типа диаграммы состояния, к резкому изменению температур фазовых и полиморфных превращений, к появлению новых фаз, отсутствующих в данной системе при атмосферном давлении. Так, например, диаграмма с неограниченной растворимостью в твердом состоянии при высоких температурах и распадом твердого раствора α на два твердых раствора α1 + α2 при низких температурах может с увеличением давления постепенно переходить в диаграмму с эвтектикой (см. рис. 4.18,а ). На рис. 4.18,б показана диаграмма состояния системы Ga–P, в которой образуется полупроводниковое соединение GaP. В зависимости от давления это соединение может плавиться конгруэнтно или инконгруэнтно. Соответственно изменяется и вид двойной диаграммы T X на различных изобарических сечениях тройной P T X диаграммы.

На практике объемные P T X диаграммы строятся очень редко. Обычно фазовые превращения в трехмерных P T X диаграммах ана

Рис. 4.18. а - P T X диаграмма; б - P T X диаграмма состояния

системы Ga–P с конгруэнтно и инконгруэнтно плавящимся соединением GaP в

зависимости от давления.

лизируют с помощью их проекций на плоскости P T , T X и P X , а также различных сечений при постоянных значениях температуры или давления (см. рис. 4.18,а ).

Заметим, что при анализе фазовых превращений в системе следует различать P T X фазовые диаграммы, в которых давление диссоциации P дис9 мало и P на фазовой диаграмме - это внешнее давление и в которых давление диссоциации велико и P - это P дис. В системах, компоненты которых обладают низким давлением диссоциации и в которых максимальная температура плавления смеси ниже самой низкой температуры кипения (в системе нет легколетучих компонентов), ролью газовой фазы при фазовых превращениях можно пренебречь. Если же давление диссоциации какого-либо из компонентов велико (система содержит легколетучие компоненты), то состав газовой фазы необходимо учитывать при температурах как выше, так и ниже ликвидуса.

Рассмотрим подробнее фазовые диаграммы P дис − T X с высоким

давлением диссоциации (фазовые диаграммы с легколетучими компонентами). Следует отметить, что внимание к ним повысилось в связи с возросшей ролью в полупроводниковой электронике соединений, содержащих летучие компоненты. Например, к ним относятся соединения AIIIBV, содержащие легколетучие компоненты фосфор и мышьяк, соединения AIIBVI, содержащие ртуть, AIVBVI, содержащие серу, и т. д.

Все полупроводниковые соединения обладают более или менее протяженной областью гомогенности, то есть способны растворять в себе

9 P дис - равновесное для данных условий давление диссоциации всех фаз, находящихся в равновесии. При наличии в системе одного легколетучего компонента P дис - это равновесное давление диссоциации легколетучего компонента системы.

какой-либо из компонентов сверх стехиометрического состава или третий компонент.

Любые отклонения от стехиометрического состава сказываются на электрических свойствах (см. гл. 3). Поэтому для воспроизводимого получения кристаллов, содержащих летучий компонент, с заданными свойствами необходимо и воспроизводимое получение соединений заданного состава.

Однако летучесть одного их компонентов соединения приводит к отклонению от стехиометрического состава из-за образования вакансий - анионных или катионных - в зависимости от того, давление диссоциации какого компонента будет выше, и, соответственно, избытка другого компонента. Как уже обсуждалось в гл. 3, вакансии в ряде соединений могут создавать акцепторные или донорные уровни, тем самым влияя на физические свойства.

Энергия образования вакансий в позициях A и B практически никогда не бывает одинаковой, поэтому концентрация анионных и катионных вакансий также различна, а область гомогенности соединения оказывается несимметричной относительно стехиометрического состава. Соответственно практически для всех соединений максимум температуры плавления не соответствует сплаву стехиометрического состава.10

Предотвратить изменение состава соединения за счет летучести можно, если выращивать его из расплава или раствора при внешнем давлении летучего компонента, равном давлению диссоциации при температуре выращивания. Это условие и выбирают с помощью P дис − T X диаграмм.

Давление диссоциации легколетучего компонента в сплавах сильно зависит от его состава, как правило, понижаясь с уменьшением концентрации этого компонента, как, например, для системы In–As (давление диссоциации мышьяка понижается почти на четыре порядка с уменьшением концентрации мышьяка в интервале от 100 до 20% ). В результате давление диссоциации летучего компонента в соединении оказывается намного меньше давления диссоциации над чистым компонентом при той же температуре.

Это обстоятельство используется в двухтемпературной схеме получения этого соединения. В одной печи создаются две температурные зоны.

10Тем не менее, для соединений, в частности AIII BV , с узкой областью гомогенности и большинства соединений, в частности AIV BVI , со средней шириной области гомогенности применяется понятие конгруэнтно плавящихся соединений, так как отклонения реальной температуры плавления соединения от температуры плавления соединения стехиометрического состава незначительны.

Рис. 4.19. P дис − T сечение P дис − T X диаграммы состояния системы Pb–S. 1 -

трехфазная линия; 2 - PS 2 чистой серы над PbS+S2 ; 3 - PS 2 над PbS+Pb.

Одна имеет температуру T 1, равную температуре кристаллизации соединения. Здесь помещают контейнер с расплавом. Во второй зоне помещают чистый летучий компонент соединения - As. Температура T 2 во второй зоне поддерживается равной температуре, при которой давление диссоциации летучего компонента в чистом виде равно давлению диссоциации этого компонента в соединении при температуре T 1. В результате в первой зоне давление паров летучего компонента над соединением равно его парциальному давлению диссоциации в соединении, что предотвращает улетучивание этого компонента из расплава и обеспечивает кристаллизацию соединения заданного состава.

На рис. 4.19 приведена P T проекция фазовой диаграммы Pb–S.

Сплошной линией показана линия трехфазного равновесия твердой, жидкой и газообразной фаз, ограничивающая область устойчивости твердого соединения; пунктиром - изоконцентрационные линии в пределах области гомогенности. Изоконцентрационные линии показывают составы с равным отклонением от стехиометрии (одинаковые составы) в сторону избытка свинца (проводимость n -типа) или в сторону избытка серы (проводимость p -типа), равновесные при данных значениях температуры и давления паров серы. Линия n = p соответствует значениям температуры и давления PS 2 , при которых твердая фаза имеет строго стехиометрический состав. Она пересекает трехфазную линию при температуре, которая является температурой плавления соединения стехиометрического состава. или в сторону избытка серы (проводимость p -типа) .

Как видно из рис. 4.19, температура плавления соединения стехиометрического состава ниже максимальной температуры плавления, которую имеет сплав с избытком свинца по сравнению с формульным составом. Видна резкая зависимость состава кристалла от парциального давления паров летучего компонента. В области высоких температур все кривые, соответствующие разным составам, приближаются к линии n = p . С понижением температуры разница между равновесными давлениями, соответствующими разным составам, увеличивается. Этим объясняется трудность получения сплава заданного состава непосредственно при кристаллизации, проходящей при высоких температурах. Поскольку кривые парциального давления для разных составов близки, небольшие случайные отклонения давления паров летучего компонента могут привести к ощутимому изменению состава твердой фазы.

Если же кристалл после выращивания подвергнуть длительному отжигу при более низких температурах и таком давлении, что изоконцентрационные линии для разных составов резко расходятся, то состав кристалла можно довести до заданного. Этим часто пользуются на практике.


Close