Производная от координаты по времени есть скорость. x"(t)=v(t) Физический смысл производной


Производная от скорости по времени или вторая производная от координаты по времени есть ускорение. a(t)=v "(t)=x""(t)




Точка движется по координатной прямой согласно закону x(t)= t²+t+2, где x(t) – координата точки в момент времени t (время измеряется в секундах, расстояние в метрах). В какой момент времени скорость точки будет равна 5 м/с? Решение: Скорость точки в момент времени t есть производная от координаты по времени. Т. к. v(t) = x"(t) = 2t+1 и v = 5 м / с, то 2t +1= 5 t=2 Ответ: 2.


При торможении маховик за t секунд поворачивается на угол φ (t)= 6 t- t² радиан. Найдите угловую скорость ω вращения маховика в момент времени t=1с. (φ (t)- угол в радианах, ω(t)- скорость в рад/с, t- время в секундах). Решение: ω (t) = φ "(t) ω (t) = 6 – 2t t = 1 c. ω (1) = 6 – 2 × 1 = 4 рад/с Ответ:4.


При движении тела по прямой его скорость v(t) по закону v(t)=15+8 t -3t² (t - время движения тела в секундах).Каким будет ускорение тела (в м/с²) через секунду после начала движения? Решение: v(t)=15+8t-3t² a(t)=v"(t) a(t)=8-6t t=1 a(1)=2 м / с ² Ответ: 2.


Применение производной в физических задачах. Заряд, проходящий через поперечное сечение проводника, вычисляется по формуле q(t)=2t 2 -5t. Найти силу тока при t=5c. Решение: i(t)=q"(t) i(t)=4t-5 t=5 i(5)=15 А. Ответ:15.


При движении тела по прямой расстояние s(t) от начальной точки М изменяется по закону s(t)=t 4 -4t 3 -12t +8 (t- время в секундах). Каким будет ускорение тела (в м/с 2) через 3 секунды? Решение. a(t)=v "(t)=s""(t). Найдем v(t)=s"(t)=(t 4 -4t 3 -12t +8)" =4t 3 -12t a(t)=v "(t)= s""(t)= (4t 3 -12t 2 -12)" =12t 2 -24t, a(3)=12× ×3=108-72=36м/с 2. Ответ. 36.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Алгебра щедра. Зачастую она дает больше, чем у нее спрашивают.

Ж.Даламбер

Межпредметные связи являются дидактическим условием и средством глубокого и всестороннего усвоения основ наук в школе.
Кроме того, они способствуют повышению научного уровня знаний учащихся, развитию логического мышления и их творческих способностей. Реализация межпредметных связей устраняет дублирование в изучении материала, экономит время и создаёт благоприятные условия для формирования общеучебных умений и навыков учащихся.
Установление межпредметных связей в курсе физики повышает эффективность политехнической и практической направленности обучения.
В преподавании математики очень важна мотивационная сторона. Математическая задача воспринимается учащимися лучше, если она возникает как бы у них на глазах, формулируется после рассмотрения каких-то физических явлений или технических проблем.
Сколько бы ни говорил учитель о роли практики в прогрессе математики и о значении математики для изучения физики, развития техники, но если он не показывает, как физика влияет на развитие математики и как математика помогает практике в решении её проблем, то развитию материалистического мировоззрения будет нанесен серьёзный ущерб. Но для того, чтобы показать, как математика помогает в решении её проблем, нужны задачи, не придуманные в методических целях, а возникающие на самом деле в различных областях практической деятельности человека

Исторические сведения

Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:

  • о разыскании касательной к произвольной линии;
  • о разыскании скорости при произвольном законе движения.

Еще раньше понятие производной встречалось в работах итальянского математика Николо Тартальи (около 1500 – 1557гг.) – здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.

В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной.

Посвящает целый трактат о роли производной в математике известный учёный Галилео Галилей. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л.Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.

Некоторые применения производной в физике

Производная - основное понятие дифференциального исчисления, характеризующее скорость изменения функции .

Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Таким образом,

Значит, чтобы вычислить производную функции f(x) в точке x 0 по определению, нужно:

Рассмотрим несколько физических задач, при решении которых применяется эта схема.

Задача о мгновенной скорости. Механический смысл производной

Напомним, как определялась скорость движения. Материальная точка движется по координатной прямой. Координата х этой точки есть известная функция x(t) времени t. За промежуток времени от t 0 до t 0 + перемещение точки равно x(t 0 + ) x(t 0) – а её средняя скорость такова: .
Обычно характер движения бывает таковым, что при малых , средняя скорость практически не меняется, т.е. движение с большой степенью точности можно считать равномерным. Другими словами, значение средней скорости при стремится к некоторому вполне определённому значению, которое называют мгновенной скоростью v(t 0) материальной точки в момент времени t 0 .

Итак,

Но по определению
Поэтому считают, что мгновенная скорость в момент времени t 0

Аналогично рассуждая, получаем, что производная от скорости по времени есть ускорение, т.е.

Задача о теплоемкости тела

Чтобы температура тела массой в 1г повысилась от 0 градусов до t градусов, телу необходимо сообщить определенное количество тепла Q . Значит, Q есть функция температуры t , до которой тело нагревается: Q = Q(t). Пусть температура тела повысилась с t 0 до t. Количество тепла, затраченное для этого нагревания, равно Отношение есть количество тепла, которое необходимо в среднем для нагревания тела на 1 градус при изменении температуры на градусов. Это отношение называется средней теплоёмкостью данного тела и обозначается с ср .
Т.к. средняя теплоёмкость не дает представления о теплоёмкости для любого значения температуры Т, то вводится понятие теплоёмкости при данной температуре t 0 (в данной точке t 0 ).
Теплоемкостью при температуре t 0 (в данной точке) называется предел

Задача о линейной плотности стержня

Рассмотрим неоднородный стержень.

Для такого стержня встаёт вопрос о скорости изменения массы в зависимости от его длины.

Средняя линейная плотность масса стержня есть функция его длины х .

Таким образом, линейная плотность неоднородного стержня в данной точке определяется следующим образом:

Рассматривая подобные задачи, можно получить аналогичные выводы по многим физическим процессам. Некоторые из них приведены в таблице.

Функция

Формула

Вывод

m(t) – зависимость массы расходуемого горючего от времени. Производная массы по времени есть скорость расхода горючего.
T(t) – зависимость температуры нагреваемого тела от времени. Производная температуры по времени есть скорость нагрева тела.
m(t) – зависимость массы при распаде радиоактивного вещества от времени. Производная массы радиоактивного вещества по времени есть скорость радиоактивного распада.
q(t) – зависимость количества электричества, протекающего через проводник, от времени Производная количества электричества по времени есть сила тока .
A(t) – зависимость работы от времени Производная работы по времени есть мощность .

Практические задания:

Снаряд, вылетевший из пушки, движется по закону x(t) = – 4t 2 + 13t (м). Найти скорость снаряда в конце 3 секунды.

Количество электричества, протекающего через проводник, начиная с момента времени t = 0 c, задаётся формулой q(t) = 2t 2 + 3t + 1 (Кул) Найдите силу тока в конце пятой секунды.

Количество тепла Q (Дж), необходимого для нагревания 1 кг воды от 0 o до t o С, определяется формулой Q(t) = t + 0,00002t 2 + 0,0000003t 3 . Вычислите теплоемкость воды, если t = 100 o .

Тело движется прямолинейно по закону х(t) = 3 + 2t + t 2 (м). Определите его скорость и ускорение в моменты времени 1 с и 3 с.

Найдите величину силы F, действующей на точку массой m, движущуюся по закону х(t) = t 2 – 4t 4 (м), при t = 3 с.

Тело, масса которого m = 0,5кг, движется прямолинейно по закону х(t) = 2t 2 + t – 3 (м). Найдите кинетическую энергию тела через 7 с после начала движения.

Заключение

Можно указать еще много задач из техники, для решения которых также необходимо отыскивать скорость изменения соответствующей функции.
Например, отыскание угловой скорости вращающегося тела, линейный коэффициент расширения тел при нагревании, скорость химической реакции в данный момент времени.
Ввиду обилия задач, приводящих к вычислению скорости изменения функции или, иначе, к вычислению предела отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, оказалось необходимым выделить такой предел для произвольной функции и изучить его основные свойства. Этот предел и назвали производной функции.

Итак, на ряде примеров мы показали, как различные физические процессы описываются с помощью математических задач, каким образом анализ решений позволяет делать выводы и предсказания о ходе процессов.
Конечно, число примеров такого рода огромно, и довольно большая часть из них вполне доступна интересующимся учащимся.

“Музыка может возвышать или умиротворять душу,
Живопись – радовать глаз,
Поэзия – пробуждать чувства,
Философия – удовлетворять потребности разума,
Инженерное дело – совершенствовать материальную сторону жизни людей,
А математика способна достичь всех этих целей”.

Так сказал американский математик Морис Клайн .

Список литературы :

  1. Абрамов А.Н., Виленкин Н.Я. и др. Избранные вопросы математики. 10 класс. – М: Просвещение, 1980.
  2. Виленкин Н.Я., Шибасов А.П. За страницами учебника математики. – М: Просвещение,1996.
  3. Доброхотова М.А., Сафонов А.Н . Функция, её предел и производная. – М: Просвещение, 1969.
  4. Колмогоров А.Н., Абрамов А.М. и др. Алгебра и начала математического анализа. – М: Просвещение, 2010.
  5. Колосов А.А. Книга для внеклассного чтения по математике. – М: Учпедгиз, 1963.
  6. Фихтенгольц Г.М. Основы математического анализа, ч.1 – М: Наука, 1955.
  7. Яковлев Г.Н. Математика для техникумов. Алгебра и начала анализа, ч.1 – М: Наука, 1987.

Иногда в задаче B9 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» B9.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=x\left(t \right)$, то $v$ мы можем посчитать следующим образом:

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

\[{x}"\left(t \right)=-\frac{1}{5}\cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

\[{x}"\left(t \right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5\]

Нам требуется найти производную в точке 2. Давайте подставим:

\[{x}"\left(2 \right)=-{{2}^{4}}+4\cdot {{2}^{3}}-3\cdot {{2}^{2}}+5=\]

\[=-16+32-12+5=9\]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

\[{x}"\left(t \right)=\frac{1}{3}\cdot 3{{t}^{2}}-4\cdot 2t+19\]

\[{x}"\left(t \right)={{t}^{2}}-8t+19\]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

\[{{t}^{2}}-8t+19=3\]

\[{{t}^{2}}-8t+16=0\]

\[{{\left(t-4 \right)}^{2}}=0\]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.


Close